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(4) Introduction

At present, biopsy is the gold standard in breast lesion characterization. However, the
positive breast biopsy rate is only about 15-30%. This means that 70-85% of breast biopsies are
performed for benign lesions. In order to reduce patient anxiety and morbidity, as well as to
decrease health care costs, it is desirable to reduce the number of benign biopsies without
missing malignancies. Mammography and sonography are two low-cost imaging modalities that
may be improved so that radiologists can obtain more accurate diagnostic information to
differentiate malignant and benign lesions. Computerized analysis of the lesions on these images
is one of the promising tools that may improve the radiologists’ accuracy in characterizing these

lesions by providing a consistent and reliable second opinion to radiologists.

In this project, our goal is to analyze volumetric images to improve the accuracy of computerized
sonographic breast lesion characterization, and to combine these characterization results with
those obtained by computerized analysis of mammograms. Computerized image analysis,
feature extraction, and classification methods will be developed to characterize breast masses on
three-dimensional or volumetric ultrasound (US) images. The output of the classifier will be a
computer rating related to the likelihood of malignancy of the mass. The accuracy of this rating
will be studied by comparing it to the biopsy results. We will then combine this rating with a
similar rating obtained by computerized analysis of the mammograms of the same patient. The

combined classifier is expected to be more accurate than either classifier alone.
(5) Body
In the current project year (9/6/03-9/5/04), we have performed the following studies:

(A) Collection of Database



We have continued the collection of database in the third year of this proposal. Up to this
point in time, we have collected volumetric data from 183 patients. We have digitized over 215
mammograms from over 85 patients where each case contained a biopsy proven mass. The breast
imaging experts in this project, Drs. Helvie and Roubidoux, have continued reading
mammograms and US volumes, marking the masses and providing mass descriptors.

We have also performed an experiment in which six expert radiologists provided mass
descriptors of 102 US scans. The assessment of mass characteristics shown in Table 1 helped us -

better identify the properties of our data set.
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Table 1: Characteristics of the sonographic masses in our data set of 102 cases. Each characteristic was
determined from the assessments by the six radiologists using a majority voting method, in
which the descriptor that was selected by the largest number of radiologists was chosen. The
numbers in parentheses are the percentages of the descriptors relative to the total number of

benign and malignant masses in the data set. Benign (B): N=46, Malignant (M): N=56

(B) Outcome analysis of the observer performance study that uses the computer
classifier designed on 3D US images
In year 2 of the project, we had conducted an observer study to investigate if our computer
classifier that uses 3D US volumes would improve radiologists’ accuracy in differentiation of
malignant and benign breast masses on ultrasound images. In year 3, we conducted an in-depth
analysis of the results of this observer performance study. The results of this analysis have been

submitted to the journal Radiology as an original research paper [1]. (Appendix 3).

The data set this study consisted of 102 US scans containing 102 biopsy-proven breast
masses, of which 46 were benign and 56 were malignant. Our previously developed computer
algorithm, explained in detail in Appendix 1 [2], had an area under the ROC curve of A,=0.92.
Five radiologists (RAD1-RADS) participated as observers. They read the 3D US images using a
specially-developed software first without CAD and then with CAD. They provided a likelihood
of malignancy (LM) rating under both conditions. For details about the study design, please
refer to Appendix 3.

The LM ratings of the radiologists with and without CAD were analyzed using ROC
methodology. The area under the ROC curve, A,, and the partial area index above a sensitivity
of 0.9, A, [3] were used as the accuracy measures. For the group of five radiologists, the

significance of the change in accuracy with CAD was tested using the Dorfman-Berbaum-Metz



(DBM) multi-reader multi-case (MRMC) methodology [4]. The sensitivity and specificity of
each radiologist with and without CAD were compared using an LM rating of 2% as the
threshold above which biopsy would be recommended [5, 6].

©9 above

Table 2 shows the area A, under ROC curve, and the partial area index A,
a sensitivity of 0.9, for the characterization of the masses in the data set without and with
CAD by the 5 radiologists. It is observed that every radiologist showed improvement in
both measures when they read with CAD. The improvement was statistically significant
for every radiologist. The average ROC curves of the five radiologists with and without

CAD, and the ROC curve of the computer classifier are shown in Fig. 1. The improvement

was statistically significant as measured by DMB analysis (p=0.006).

Rad. A, A9

No'  NoCAD WithCAD pvalue NoCAD  WithCAD  pvalue

1 0.83+0.04  0.89+0.03 0.0008 0.25£0.10  0.35%0.14 0.17
2 0.81+0.04  0.8610.04 0.0005 0.14+0.08  0.23+0.12 0.13
3 0.8740.03  0.9110.03 0.0486 0.391£0.12  0.53%0.12 0.0747

4 0.8240.04  0.93+0.02 0.0004 0.3910.10  0.68%+0.09 0.0008

9.}

0.8310.04  0.90+0.03 0.0007 0.29+0.10  0.4240.12 0.0323

Table 2: The area A, under ROC curve, and the partial area index A% above a sensitivity of
0.9, for the characterization of the masses in the data set without and with CAD by the

5 radiologists. The p value for each radiologist is also shown.
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~ Figure 1: The average ROC curves of the radiologists with and without CAD, and the ROC curve of the
computer classifier. With CAD, the average A, value of the radiologists improved

significantly (p=0.006) from 0.84 to 0.90.

With 102 cases and five radiologists, we had a total of 510 pairs of LM ratings with
and without CAD. Figure 2 shows a histogram of the change in the radiologists’ LM
ratings with CAD for these 510 readings. The radiologists did not change their LM rating
substantially (i.e., within 5) with CAD in 64% (326/510) of the readings. For inalignant
masses, the ratings were substantially increased for 34% (95/280) and decreased for 7%
(19/280) of the readings. For benign masses, the ratings were substantially increased for
14% (32/230) and decreased for 17% (38/230) of the readings. For benign masses, the
decrease in the average LM rating was 0.77, which did not achieve statistical significance
(two-tailed p=0.51). The increase in the average LM rating of malignant masses was 5.59,
which was statistically significant (two-tailed p<0.0001). Since the “cost” of failing to
biopsy a malignant lesion is much greater than that of a benign biopsy, it can logically be

expected that radiologists may tend to use the CAD system to confirm and increase their
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LM estimate of malignant lesions while not easily reducing the LM estimate of low
suspicion lesions. This will result in an overall increase in radiologists’ LM ratings. Figure

2 suggests that this is indeed the case in our study.
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Figure 2: The histogram of the change in radiologists’ ratings with CAD. For the majority of
the masses (59% of malignant masses and 70% of benign masses) the change was in
the range of -4 to 4. When the change in the scores with CAD was greater than or
equal to the range of -5 to 5, the change was called substantial. For malignant
masses, the ratings were substantially increased for an average of 34% (95/280) and
decreased for 7% (19/280) of the readings. For benign masses, the ratings were
substantially increased for 14% (32/230) and decreased for 17% (38/230) of the
readings.

The sensitivity and specificity of each radiologist with and Without CAD at an LM threshold
of 2% are listed in Table 3. On the average, the radiologists’ sensitivity increased from 96% to
98% with CAD, at the cost of a decrease in specificity from 22% to 19%. The effect of CAD
was therefore mixed when measured in terms of the radiologists’ sensitivity and specificity
values at the threshold of biopsy recommendation (LM of 2%). Table 4 also shows the

9



sensitivity and specificity for each radiologist if the LM threshold were to be adjusted to 7%
when they read with CAD, for which the average sensitivity would remain at 96% (same as that
without CAD) while the average specificity would increase to 46%. This implies that by
appropriate training, it may be possible to translate the benefits with CAD into biopsy decisions
that surpass unaided reading in terms of both sensitivity and specificity, or an improvement in

specificity without reducing sensitivity.

Rad. Sensitivity Specificity

No.  No CAD* With CAD*  With CAD**  No CAD*  With CAD*  With CAD**

1 56 (100) 56 (100) 56 (100) 4 9 5 (11 15 (33)

2 51 (91) 53 (95 49 (88) 12 (26) 11 (24) 28 (61)

3 52 (93) 54 (96) 53 (95) 24 (52) 22 (48) 29 (63)

4 55 (98) 56 (100) 56 (100) 9 (20) 5 (a1 23 (50)

5 56 (100) 56 (100) 56 (100) 1 @ 1 @ 11 (24
Avg. 54 (96) 55 (98) 54 (96) 10 (22) 9 (19) 21 (46)
Table 3.

The sensitivity and specificity for each radiologist. In each entry, the first number denotes the number of
correctly classified lesions, and the number in parentheses denotes the percentage (i.e., sensitivity for the
first three columns. and the specificity for the last three columns). The total numbers of malignant and
benign lesions are 56 and 46, respectively. The columns entitled “No CAD*” and “With CAD*” show
the sensitivity and specificity at the decision threshold of 2% likelihood of malignancy, without and with
CAD, respectively. The columns entitled “With CAD'**” show the hypothetical sensitivity and
specificity with CAD at a decision threshold of 7% likelihood of malignancy, for which the average

sensitivity would be the same as that without CAD (96%), but the average specificity would be increased

to 46%.
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(C) Further development of the multi-modality classifier
In year 2 of the proposal, we had performed a preliminary study for combining the
mammographic and sonographic computerized mass characterization methods. In year 3, we
have enlarged our data set for this analysis and performed a more complete study. The results of
these studies have been presented at two conferences in 2004 [7, 8](Appendices 2 and 5). We
have identified that Method B mentioned in last year’s report was the most robust method for

combining the classifiers from the two modalities. In this method, we first combine the feature

- vectors from different mammographic views of the same patient into a case-based

mammographic feature vector. Similarly, the feature vectors from different US slices are
combined into a case-based US feature vector. The case-based US and mammographic feature

vectors are combined into a malignancy score using a single classifier.

We performed a study using US volumes and mammograms from 67 patients to validate
this method. Thirty two of the masses were benign and 35 were malignant. The total number of
mammographic views was 163, with each case containing between one and three views (CC,
MLO, or LAT). Five radiologists read the mammograms and 3D US images on a high-quality
computer monitor using a graphical user interface with which they could view the
mammographic regions of interest, navigate through 3D volumes, adjust the window and level bf
the displayed images, and enter a malignancy rating between 1 and 100 (higher rating indicating
higher likelihood of malignancy).

The computer classifier using the US images alone, mammograms alone, and the
combinea feature space had A, values of 0.8810.04, 0.86+0.05, and 0.92+0.03, respectively.

The ROC curves with the single-modality classifiers and the multi-modality classifier are shown

11




in Figure 3. Although the multi-modality classifier had higher accuracy, the difference between
the A, values of the multi-modality and single-modality classifiers did not reach statistical
significance, probably because of the small sample size. The A, values of the five radiologists
ranged between 0.86 and 0.96. The A, value of their average ROC curve, computed by
averaging the a and b values in ROC analysis, was 0.92. Figure 4 compares the ROC curve of

the computer classifier to that of the individual radiologists.
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Figure 3: Comparison of the ROC curves for the Figure 4: Comparison of the ROC curves of the
single-modality and multi-modality computer five radiologists and the multi-modality

classifiers. computer classifier.

(D) Preliminary work on the effect of the multi-modality classifier on radiologists’
classification accuracy

We have been conducting a preliminary study on the effect of the multi-modality classifier

described in Section (C) on radiologists’ characterization accuracy of breast masses. We

have submitted an abstract to RSNA 2004 Conference, and we will present our findings in
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December 2004. Up to this point, five experienced radiologists have completed the observer
performance study. The data set was the same as that used in Section (C). Using a specially-
designed graphical user interface (GUIj, the radiologists read the cases sequentially under
three conditions: (1) Mammograms alone, (2) Mammograms and 3D US volumes, (3)
Mammograms, 3D US volumes, and CAD scores. Under each condition, they provided a
likelihood of malignancy rating. They also provided a BI-RADS rating under cohdition 1)
and an action category (follow-up or biopsy) under conditions (2) and (3). Figure 3 shows a

snapshot from the GUI under condition (3).

o~ Malignant

_ Score
assifier Hcore mo

Figure 5: A snapshot of the GUI when the radiologist is reading the case under condition 3. The
radiologists likelihood of malignancy rating (100 point scale) and the computer score (10-

point scale) are shown by arrows.
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The classification accuracies of the radiologists under the three reading conditions were
quantified using the area under ROC curve, A,, as well as specificity and sensitivity. Figure 4
shows the A, values of each radiologist under the three reading conditions. It is observed that for
each radiologist condition 3 (reading with CAD) was the most accurate, followed by condition
(2) and then followed by condition (1). The average A, values of the five radiologists were 0.88,

0.92, and 0.95, under Conditions (1), (2), and (3), respectively.

1.0 a2 ] [ a2 a2
0.9 ' s Mammo
alone
0.8 - | Mammo
N +US
< || | m=m Mammo
0.7 - 11 +US+CAD
ssmsss COmputer
alone
0.6 - i
0.5
1 2 3 4 5
Radiologist

Figure 6: The area A, under the ROC curve for each radiologist under the three reading conditions. The

average A, values were: 0.88, 0.92, and 0.95, respectively, under Conditions (1), (2), and (3).

The improvement with CAD was statistically significant using the t-test (p=0.03).
However, it did not reach statistical significance using the DBM method, likely due to the small
sample size. We are continuing to recruit radiologists into the observer study to reduce the

variance component in the analysis due to reader variation.
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The sensitivities and specificities of the five radiologists are shown in Table 4. It is
observed that the radiologists’ sensitivity increased when US was used as an adjunct to
mammography. However, the trade-off is that the specificity was reduced under condition (2)

‘compared to condition (1). This is not surprising, because these masses were mostly solid. As a
result, the radiologists’ likelihood of malignancy increased for most masses when they evaluated
the case with US. Under condition (3), both sensitivity and specificity increased compared to
condition (2), although the increases were small. We expect to obtain a more realistic

assessment when more radiologists complete the study.

Mammography Mammography Mammography
alone +US +US+CAD

Rad. # Sens. Spec. Sens. Spec. Sens. Spec.
1 0.97 0.34 1.00 0.16 1.00 0.16

2 0.83 0.66 0.89 0.66 0.94 0.63

3 1.00 0.13 1.00 0.13 1.00 0.19

4 1.00 0.16 1.00 0.16 1.00 0.28

5 0.77 0.84 0.94 0.53 0.97 0.50
Avg. 0.91 0.43 0.97 0.33 0.98 0.35

Table 4: The sensitivity and specificity of each radiologist under the three reading conditions.

(6) Key Research Accomplishments

e We performed a through analysis of the observer performance study conducted in year 2
(radiologists reading 3D US volumes without and with CAD). Our analysis confirmed the
preliminary finding that CAD can significantly improve radiologists’ characterization
accuracy of sonographic breast masses.

e OQur analysis of the same observer study also implies that by appropriate training, it may be

possible to translate the benefits of reading US images with CAD into biopsy decisions that
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surpass unaided reading in terms of both sensitivity and specificity, or an improvement in
specificity without reducing sensitivity.

e We evaluated the classification accuracy of mammographic CAD (Task 4a), and compared it
to the accuracy of US CAD (Task 3). |

e  We identified preferred algorithms and parameters for the design of the computer classifier
that combines the ultrasound and mammography information (Task 3b)

e We performed preliminary studies for the evaluation of the potential improvement when the

radiologists use multi-modality CAD (part of Task 4b).

(7) Reportable Outcomes

The journal paper that we submitted to Medical Physics in year 2 has been published in year
3. We have submitted a manuscript to the journal Radiology on the effect of the 3D US
classifier on radiologists’ characterization of breast masses on ultrasound images. In year 3, we
have submitted one conference abstract on computer-aided characterization of breast masses on
ultrasound images that has been accepted for publication. Additionally, we presented our results
in three conferences (RSNA 2003, SPIE 2004, and IWDM 2004), and published two conference
proceeding papers. We are in the process of writing a manuscript for journal submission on the
effect of the multi-modality classifier on radiologists’ characterization of breast masses on US
images and mammograms.
Journal Publications:
Sahiner B, Chan HP, Roubidoux MA, Helvie MA, Hadjiiski LM, Ramachandran A,
LeCarpentier GL, Nees A, Paramagul C, Blane CE, "Computerized characterization of breast

masses on 3-D ultrasound volumes," Med Phys, 2004, 31(4): 744-754.
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Sahiner B, Chan HP, Roubidoux MA, Hadjiiski L, Helvie MA, Paramagul C, Bailey J, Nees A,
Blane C, “Computer-Aided Diagnosis of Malignant and Benign Breast Masses in 3D Ultrasound
Volumes: Effect on Radiologists' Characterization Accuracy,” Radiology (submitted) 2004.
Conference Abstracts:

Sahiner B, Chan HP, Hadjiiski LM, Roubidoux MA, Paramagul CP, Helvie MA, et al., "The
effect of a multi-modality computer classifier on radiologists’ accuracy in characterizing breast
masses using mammograms and volumetric ultrasound images: An ROC study,” to be presented
at the 90" Scientific Assembly and Annual Meeting of the Radiological Society of North America,
Chicago, IL, Nov. 28-Dec 3, 2004.

Conference Proceedings:

Sahiner B, Chan HP, Hadjiiski LM, Roubidoux MA, Paramagul C, Helvie MA, Zhou C, “Multi-
modality CAD: Combination of computerized classification techniques based on mammograms
and 3D ultrasound volumes for improved accuracy in breast mass characterization,” Proc. SPIE

Medical Imaging, 2004, 5370:67-74.

Sahiner B, Chan HP, Hadjiiski LM, Roubidoux MA, Paramagul C, Helvie MA, LeCarpentier GL,
“Fusion of mammographic and sonographic computer-extracted features for improved
characterization of breast masses,” Digital Mammography IWDM 2004: 7th International

Workshop on Digital Mammography, (in press).

(8) Conclusions

As a result of the support by the USAMRMC BCRP grant, in the third year of this project, we have (1)

analyzed the observer performance study conducted in yeaf 2 (radiologists reading 3D US volumes
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without and with CAD) and submitted a journal paper based on this analysis; (2) evaluated the
classification accuracy of mammographic CAD, and compared it to the accuracy of US CAD; (3)
identified preferred algorithms and parameters for the design of the computer classifier (multi-modality
CAD) that combines the US and mammography information; and (4) performed preliminary studies for

the evaluation of the potential improvement when the radiologists use multi-modality CAD.

Our results are very encouraging. We have found that CAD can significantly improve radiologists’
characterization accuracy of sonographic breast masses. Although this finding is important, its clinical
significance is limited,because radiologists use both mammograms and US images to evaluate masses.
We have therefore started to conduct on observer study in which the computer uses both modalities for
mass characterization, and radiologists read both modalities with and without the aid of multi-modality
CAD. We have found that all five radiologists who completed the study so far showed improvement
with CAD. We believe that participation of additional radiologists and further analysis of this study will
reveal the potential of multi-modality CAD. Further improvement of the 3D ultrasound characterization
methods and improved methods for combination with mammographic computer image anélyses can
provide radiologists with a powerful aid for decision making, which may help reduce unnecessary

biopsies and improve patient care.
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We are developing computer vision techniques for the characterization of breast masses as malig-
nant or benign on radiologic examinations. In this study, we investigated the computerized charac-
terization of breast masses on three-dimensional (3-D) ultrasound (US) volumetric images. We
developed 2-D and 3-D active contour models for automated segmentation of the mass volumes.
The effect of the initialization method of the active contour on the robustness of the iterative
segmentation method was studied by varying the contour used for its initialization. For a given
segmentation, texture and morphological features were automatically extracted from the segmented
masses and their margins. Stepwise discriminant analysis with the leave-one-out method was used
to select effective features for the classification task and to combine these features into a malig-
nancy score. The classification accuracy was evaluated using the area 4, under the receiver oper-
ating characteristic (ROC) curve, as well as the partial area index Ago.9) , defined as the relative area
under the ROC curve above a sensitivity threshold of 0.9. For the purpose of comparison with the
computer classifier, four experienced breast radiologists provided malignancy ratings for the 3-D
US masses. Our dataset consisted of 3-D US volumes of 102 biopsied masses (46 benign, 56
malignant). The classifiers based on 2-D and 3-D segmentation methods achieved test 4, values of
0.87+0.03 and 0.92+0.03, respectively. The difference in the 4, values of the two computer
classifiers did not achieve statistical significance. The 4, values of the four radiologists ranged
between 0.84 and 0.92. The difference between the computer’s 4, value and that of any of the four
radiologists did not achieve statistical significance either. However, the computer’s A£0.9) value was
significantly higher than that of three of the four radiologists. Our results indicate that an automated
and effective computer classifier can be designed for differentiating malignant and benign breast
masses on 3-D US volumes. The accuracy of the classifier designed in this study was similar to that
of experienced breast radiologists. © 2004 American Association of Physicists in Medicine.
[DOL: 10.1118/1.1649531]

Key words: computer-aided diagnosis, 3-D ultrasound, breast mass characterization, segmentation

I. INTRODUCTION

The importance of early breast cancer detection requires a
vigorous approach to the characterization of breast lesions.
At present, the positive biopsy rate for nonpalpable breast
lesions as well as for nonpalpable breast masses is between
15%—30%.'~* This means that 70%—85% of breast biopsies
are performed for benign lesions. In order to reduce patient
anxiety and morbidity, as well as to decrease health care
costs, it is desirable to reduce the number of benign biopsies
without missing malignancies. Computer-aided diagnosis
(CAD) can provide a consistent and reproducible second
opinion to the radiologists, and has a potential to assist them
in reducing benign biopsies. Recent studies on the comput-
erized classification of breast masses based on mammo-

-graphic image features suggest that the radiologists’ perfor-

mance may be significantly improved if they are aided by a
well-trained CAD system.””’ Breast ultrasound (US) is an
important imaging modality for the characterization of breast
masses as malignant and benign. An objective and reproduc-
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ible second opinion from a computer classifier for the clas-
sification of breast masses based on US image features may
be an important addition to CAD tools being developed for
mammographic image analysis.

Breast US is widely accepted as a highly accurate modal-
ity for the differentiation of cystic and noncystic masses. As
a result of technological improvements and more sophisti-
cated utilization by radiologists, US has been gaining popu-
larity for the characterization of noncystic, or solid, breast
masses. By combining several ultrasonic characteristics,
Stavros ef al.® achieved a specificity of 98.4% and a sensi-
tivity of 68.7% on a dataset of 750 solid breast masses. Us-’
ing strict criteria for a benign diagnosis, Skaane et al.’
achieved a positive predictive value of 66% and a negative
predictive value of 98% for the differentiation of fibroad-
enoma and invasive ductal carcinoma on sonograms. Re-
cently, Taylor et al. investigated whether the complementary
use of US imaging could decrease the biopsy of benign, non-
cystic masses. On a dataset of 761 biopsied masses, they
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found that the addition of US evaluation to mammography
alone could increase the specificity from 51.4% to 63.8%
while slightly increasing the sensitivity from 97.1% to
97.9%.!° In our study we aim at developing techniques for
the computerized characterization of solid breast masses,
which may eventually improve the radiologists’ accuracy in
this difficult and important task.

A number of researchers have recently investigated the
application of CAD to breast US images.!!"!* Chen ez al."?
extracted autocorrelation features from rectangular regions of
interest (ROIs) containing solid breast masses. Using a neu-
ral network classifier, they obtained an area 4, under the
receiver operating characteristic (ROC) curve of 0.956 for
classification of a dataset of 140 biopsy-proven masses as
malignant or benign. Horsch et al.'> developed an automated
segmentation method for delineating the mass boundaries,
and compared its characterization accuracy on different sub-
sets with that obtained from manual segmentation. Using
manual and automated segmentation methods, they obtained
A, values of 0.91 and 0.87, respectively, in the task of dif-
ferentiating all malignant and benign lesions in their dataset,
and 0.88 and 0.82, respectively, in the task of differentiating
the subset of malignant and benign solid lesions. Chen
et al.'* used morphological features extracted from manually
segmented mass boundaries for classification. Using a neural
network classifier, they obtained an 4, of 0.959 for classifi-
cation of a dataset of 271 biopsy-proven masses as malignant
or benign.

A 3-D US is rapidly gaining popularity as it moves out of
the research environment and into the clinical setting.’> A
computerized analysis of 3-D US images may be useful for
two reasons. First, 3-D or volumetric US data may be more
time consuming for a radiologist to interpret, thus making
CAD more desirable. Second, 3-D or volumetric US pro-
vides more data and better statistics, which should improve
statistical image analysis.

In clinical practice, breast US may be performed in dif-
ferent ways. In many breast imaging clinics, the US exami-
nation is performed by a US technologist. Once the technolo-
gist locates the mass, and determines the appropriate settings
for optimal image quality, representative static US images of
the mass are printed on hardcopy film. The radiologist only
reads the images chosen by the technologist. A second pos-
sibility is that the US scan is videotaped by the technologist
and the radiologist reads the examination on a video display.
In a third method, a radiologist will perform the US exami-
nation interactively and optimize the image quality by
changing the probe angle, direction, and US machine set-
tings. Since the US image quality is operator dependent, the
way in which the examination is performed may have an
impact on the diagnostic accuracy. At our institution, the
third method is employed. As described in Sec. II, the data
acquisition system in this study did not permit interactive
modification during 3-D image acquisition. As a result, the
data that was used by the computer and the radiologists for
mass characterization in this study may not be as informative
as the data that the radiologists could have obtained by ex-
amining the patient interactively. However, since the mass is
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entirely imaged in the 3-D dataset, our data should be at least
comparable to that obtained by using the first method de-
scribed above.

In this study, we investigated the computerized character-
ization of noncystic breast masses as malignant and benign
in 3-D US images. We developed a 3-D segmentation
method to delineate the masses. Morphological and texture
features were extracted from the mass and its margins for
classification. A linear classifier was used to merge the fea-
tures into a malignancy score. The classification accuracy
was evaluated by ROC methodology. The ROC curves of the
computer and four experienced breast radiologists were com-
pared. To our knowledge, this is the first study on 3-D US
images that investigates a computer segmentation method
followed by a computer classifier for breast cancer charac-
terization.

il. METHODS
A. Dataset

Institutional review board approval was obtained prior to
the commencement of this investigation. The images used in
this study were acquired between 1998 and 2002. Our study
group was 102 women (average age: 51 years) who had a
solid mass deemed suspicious or highly suggestive of malig-
nancy. All patients underwent biopsy or fine needle aspira-
tion. Fifty-six masses were malignant and 46 were benign.
Forty-three of the malignancies were invasive ductal carci-
noma, five were invasive lobular carcinoma, one was med-
ullary carcinoma, three were ductal carcinoma in-situ, and
four were other invasive carcinoma. Of the benign masses,
the majority were fibroadenoma (N = 18) and fibrocystic dis-
ease (N=11). The mean equivalent lesion diameter was 1.28
cm (standard deviation=0.78 cm).

The 3-D US data were acquired using an experimental
system that was previously developed and tested at our
institution.'®!7 The 3-D system consisted of a commercially
available US scanner (GE Logiq 700 with an M12 linear
array transducer), a mechanical transducer guiding system,
and a computer workstation. The linear array transducer was
operated at 11 MHz. The technologist was free to set the
focal distance and the overall gain adjustment to obtain the
best possible image. Before 3-D image acquisition, the tech-
nologist used clinical US and mammogram images to iden-
tify the suspicious mass. During 3-D image acquisition, the
technologist manually translated the transducer linearly in
the cross-plane, or the z direction, while the image acquisi-
tion system recorded 2-D B-mode images in the image scan
plane (x-y plane). The 2-D images were obtained at approxi-
mately 0.5 mm incremental translations, which were mea-
sured and recorded using a translation sensor. The number of
2-D slices was typically around 90, and varied depending on
the lesion size. The maximum distance between two 2-D
slices was 0.5 mm, and some of the distances were slightly
less than 0.5 mm. The scanned breast region measured typi-
cally 4.5 cm long by 4.0 cm wide by 4.0 cm deep. The
typical pixel size in a slice was approximately 0.11 mm.
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FiG. 1. The distribution of the malignancy rating of the masses in our dataset
based on the appearance on US images, by an experienced radiologist. 1:
Very likely benign; 100: very likely malignant.

The B-mode images were recorded into a buffer in the US
scanner. After data acquisition, the images and the position
data were transferred digitally to a workstation, where indi-
vidual planes were cropped and stacked to form a 3-D vol-
ume. The biopsied mass in each volume was identified by a
MQSA (Mammography Quality Standards Act) qualified ra-
diologist (RAD1) using clinical US and mammographic im-
ages to confirm that the 3-D images contained the suspicious
mass. The likelihood of malignancy for each mass, based on
the 3-D US image alone, was rated by the same radiologist
on a scale of 1 to 100, where a higher number corresponded
to a higher likelihood of malignancy. The distribution of the
ratings for the malignant and benign masses is shown in Fig.
1. The radiologist was also asked to fit a 3-D ellipsoid to the
mass. The 3-D ellipsoid was used to initialize the computer-
ized mass segmentation described in the next section. The
best fit was obtained by scaling, rotating, and translating an
ellipsoid superimposed on the 3-D dataset using a dynamic
object manipulation tool developed for this purpose.

B. Mass segmentation

We investigated the use of 2-D and 3-D active contour
models for the segmentation of mass boundaries.'® An active
contour model is a high-level segmentation method that uses
energy terms derived from the image gray-level information
as well as the g-priori knowledge about the object to be
segmented for accurate segmentation. The segmentation
problem is defined as an energy minimization problem. In
order for the model to lock onto the contours in the image,
the image-based energy terms, also referred to as the external
energy terms, are usually defined in terms of the image gray
levels and the image gradient magnitude. The a-priori
knowledge of the object shape is used to define internal en-
ergy terms related to features such as the continuity and the
smoothness of the contour to constrain the segmentation
problem. These terms can compensate for noise or apparent
gaps in the image gradients, which often mislead segmenta-
tion methods that do not use a-priori information.
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In a 2-D segmentation problem, the contour of the object
can be represented by V vertices, (i,,/,), v=1,...,V, where i
and j represent the two dimensions of the image. In the dis-
crete formulation of the active contour model, the total en-
ergy to be minimized is defined as

v
E=V2] E(v), (1

where E(v) is the energy at vertex (i,,7,). E(v) is defined
as the sum of the internal and external energy terms,

M
E( v)=m2=l WEm(V), @)

where E, (v) is the mth energy term at vertex v, and w,,, is
the weight of the mth energy term. In our 2-D active contour
model, we used four internal and external energy terms (M
=4). The energy terms E,;, E,, E;, and E, were deter-
mined by the gradient magnitude of the image and the con-
tinuity, smoothness, and balloon energy of the contour, re-
spectively.

To obtain the image gradient magnitude, the image 4(i,j)
was first filtered using a Gaussian smoothing filter,

H(i,j)=e~ 407, 3)

where o2 =6. The resulting filtered image B(i,j) was further
processed using Sobel filters S,(7,7) and S,(i,/), defined as

-1 0 1 -1 -2 -1
Sx= -2 0 2 and Sy= 0 0 0 , (4)
-1 0 1 1 2 1

which calculated the x- and y-direction gradients, G,(7,f)
and G,(i,j), respectively. The image gradient magnitude at
vertex v=(i,,j,) was computed as

El(v)=‘[Gx(ivsjv)+Gy(iv’jv)- (5)

The weight of the gradient energy was defined to be a
negative number; thus, minimizing w,E, attracted the con-
tour to image edges.

To find the continuity energy term, we first computed the
average line segment length d as

— =V_d)
==, ©)
where

Vi, =i 1)+ =) =127 -1,
d(V)= s RV : T N2

\/(lv_ 10) +(/V“.10) , v=V.

(7

The continuity energy term was defined as
Ey(v)=|d(v)~dl. S ®

Minimizing the continuity energy helped the vertices main-
tain regular spacing along the contour.
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The curvature term, E5(v), was approximated by the sec-
ond derivative of the contour,

E3(V)=\/Gv—l—2iu+iv+l)2+(ju—l—"zjv+jv+l)2- (9)

When the vertices were spaced regularly along the con-
tour, this term would be large when the angle at vertex v was
small.”® By discouraging small angles at vertices, this term
attempted to smooth the contour.

The balloon energy E,4(v) pushed the contour outward or
pulled it inward, depending on whether w, was positive or
negative, respectively, along a path normal to the contour.
This energy term helped the active contour traverse spurious,
isolated, or weak image edges, and countered its tendency to
shrink. The resulting model was reported to be more robust
to the initial position and image noise.?

To solve the energy minimization problem, we have cho-
sen the iterative method proposed by Williams and Shah.!
The contour is first initialized by defining V vertices (i, ,j,),
v=1,..,V. At a given iteration, the method visits each vertex
(i,,j,). Let D(v) represent the set of pixels (i',j’) in a
(2M+1)x(2M+1) neighborhood centered around (i, ,j,).
For each pixel in D(v), the sum X, w,,E,, is computed, and
the vertex (i,,f,) is moved to the (i'*,j’*) location that
minimizes this sum. The definitions of the energy terms E,
E,, and E; are given above. The balloon energy E, was
defined as E,=cos 6, where 8 represents the angle between
the normal vector to the curve at vertex v and the vector
(i'—i,,j'—Jj,). After the minimization is performed locally
at vertex (i,,j,), the algorithm moves to the vertex
(i,+15/v+1)- The method converges when no vertex changes
location at a given iteration. In practical implementation, it-
erations may be stopped when a large, predetermined per-
centage of vertices stop moving. The cross section of the
radiologist-defined ellipsoid with each image slice was used
for initializing the contour.

When the 2-D active contour model described above is
applied to a 3-D dataset, segmentation is performed indepen-
dently on each slice of the 3-D volume. However, this kind
of segmentation ignores the continuity of the object across
slices. When the slice spacing is small compared to the rate
of change of the object shape, it is expected that the shape of
the object is unlikely to change drastically from one slice to
the next. Our 3-D active contour model is aimed at using the
shape information across the 3-D slices to improve upon the
2-D active contour model. Our 3-D active contour model
was defined by including in the curvature energy term, an
additional component related to the smoothness of the mass
in the z direction. Let (i, 4./, ) denote the vth vertex in
image slice k. The curvature energy in our 3-D active contour
model was defined as

Es(v)

=Ny p= 201 10+ Gom k= 20 wpF i v 1)
+a\/(iv,k— 1 _2iv,k+ iv,k+l)2+ (ju,k—l —zjv,k+jv,k+1)29
(10)
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where a was the weight of the out-of-plane component of the
curvature relative to the in-plane component. The out-of-
plane component forced the contour to be smooth in the z
direction. Our implementation of the 3-D active contour
model started by optimizing the contour in the first slice of
the 3-D dataset (k=1). Since slice k=0 did not exist, we
assumed that (i,,/,,0)=(i,,/,,1) for all v. The contour op-
timization in slice k=1 followed the steps described above
for 2-D active contours, except that the curvature energy was
replaced by Eq. (10). After the contour was optimized for
slice k=1, the optimization was performed for slice k=2,
and so on, until the contours were optimized for all slices.
This constituted one 3-D iteration. The 3-D model repeated
the 3-D iterations until there was no movement of the verti-
ces for the 3-D contour, or when a predetermined percentage
of vertices stopped moving. Similar to our 2-D active con-
tour, the 3-D active contour was initialized using the
radiologist-defined ellipsoid.

We did not employ an optimization method for determin-
ing the active contour weights because automatic optimiza-
tion required the comparison of the automated contour with a
gold standard such as the radiologist’s manual segmentation
for training. The “true” borders of many masses on US im-
ages were not well defined, even to experienced radiologists.
Furthermore, the features that we designed did not require a
border that followed the detailed boundary of an ill-defined
or a spiculated mass. We therefore used more subjective
judgment on the “goodness of segmentation” for the mass
boundary based on our experience with the need of the fea-
tures. To determine the weights for the 2-D model, we started
with weights we had previously used for the segmentation of
masses on mammograms.?! We experimentally modified the
weights and observed the effect on the segmentation quality
for the first 15 volumes in our dataset. We found that the
combination w;=—1.5, w,=1, w3=2.6, and w,=0.2 pro-
vided a good balance between the smoothness of the contour
and its the attraction to the mass borders. These weights were
then used for the 2-D segmentation of the entire dataset. For
the 3-D active contour model, we maintained the weights at
the values that we determined for the 2-D active contour
model, and selected @=0.5. The choice of « was again based
on a qualitative assessment of segmentation on the first 15
cases.

C. Feature extraction

We have evaluated a number of morphological and tex-
ture features for characterization of the masses as malignant
or benign. Each of the features described below was ex-
tracted from every slice where the mass was segmented us-
ing either the 2-D or the 3-D automated segmentation algo-
rithm. The features extracted from different slices of the
same mass were then combined to define the feature mea-
sures (such as mean or maximum) for that mass.

1. Extraction of morphological features

The taller-than-wide shape of a sonographic mass is a
good indication of malignancy.® This characteristic was de-
fined by the ratio of the widest cross section (W) of the
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F16. 2. The definition of the width-to-height and PSF features. The width-
to-height feature was defined as the ratio of the widest cross section of the
segmented mass shape in the image plane to the tallest cross section. The
PSF feature was defined by first finding the average gray value in the pos-
terior strips R(#), i=1,...,n, then finding the minimum of R(i) among the n
strips, and finally by normalizing this value by the average gray value within
the segmented mass.

automatically segmented lesion shape to the tallest cross sec-
tion (7) in a slice (Fig. 2). Another feature that has been
reported to be useful for differentiation of malignant and
benign masses is posterior shadowing. In order to define a
posterior shadowing feature (PSF), we first calculated the
mean pixel value R(i) in overlapping vertical strips R(i), i
=1,...,n posterior to the mass, as shown in Fig. 2. The width
W of a strip was equal to one-fourth of the width of the
mass (W/4), and the height of the strip was equal to the
height of the mass (7). The left and right edges of strips R(7)
and R(i+1) differed by one pixel. In other words, the strip
R(i+1) was obtained by moving the strip R(i) to the right
by one pixel, while, of course, the strip remained posterior to
the mass and its height remained as T. In order to exclude the
bilateral posterior shadowing artifacts that are sometimes as-
sociated with fibroadenomas, the strips were defined only
posterior to the central 3 /4 portion of the mass (Fig. 2).
The minimum value of these averages, min{R(i),i=1,...,n},
was the darkest posterior strip. The PSF was defined as the
normalized average gray-level difference between the inte-
rior of the segmented mass and the darkest posterior strip,

a M~ min{R(i),i=1,...,n}
- M

PSF , 1
where M denotes the mean gray level value inside the seg-
mented mass.

2. Extraction of texture features

The features used in this study were extracted from spatial
gray-level dependence (SGLD) matrices, or co-occurrence
matrices, derived from 2-D slices of the 3-D dataset. The
(i,j)th element of the co-occurrence matrix is the relative
frequency with which two pixels: one with gray level i and
the other with gray level j, separated by a pixel pair distance
d in a direction 6 occur in the image. Features extracted from
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SGLD matrices of US images have been shown to be useful
in the classification of malignant and benign breast masses
on mammograms in previous studies.?” In this study, six tex-
ture feature measures that are invariant under linear, invert-
ible gray scale transformations were extracted. These fea-
tures were information measures of correlations 1 and 2
(IMC1 and IMC2), difference entropy (DFE), entropy
(ENT), energy (ENE), and sum entropy (SME). The math-
ematical definitions of these features can be found in the
literature.?> Although many gray scale transformations may
not be invertible due to pixel saturation or roundoff, these
features are largely independent of the gray-level gain adjust-
ments. :

It is known that the margin characteristics of a mass are
very important for its characterization, and previous studies
have indicated that texture features extracted from the mass
margins are effective for classification.* For this reason, the
texture features in this study were extracted from two disk-
shaped regions containing the boundary of each mass, as
well as presumably mass and normal tissue adjacent to the
boundary of the mass. These regions followed the contour
determined by the active contour model, as shown in Fig. 3.
The areas for the upper and lower disk-shaped regions were
chosen to be equal, and their sum was equal to the area of the
segmented mass. The pixel pair distances used for SGLD
matrix computation were chosen to be d=2, 4, and 6. Two
pixel pair angles, #=0° and §=90°, were evaluated for each
d in both regions. The number of SGLD matrices computed
for a disk-shaped region was therefore 6, and the number of
features extracted from an image containing the segmented
mass was 72 (6 features, extracted from 6 SGLD matrices in
the upper disk-shaped region and the lower disk-shaped re-
gion).

D. Classification

The features extracted from different slices of the same
mass were combined to define the feature measures for that
mass. For the width-to-height feature and the PSF, we com-
puted the mean, variance, minimum, and maximum of the
extracted value from each slice containing the mass. There-
fore eight morphological feature measures were defined for
each mass. For texture features, we only computed the mean,
hence 72 texture feature measures were defined for each
mass.

Fisher’s linear discriminant analysis (LDA)*® was used
for combining the features into a discriminant score. Since
the number of available features in the feature space was
relatively high compared with the number of available cases,
stepwise feature selection®® was used in order to reduce the
number of the features and to obtain the best feature subset
to design an effective classifier. For partitioning the dataset
into trainers and testers, we used the leave-one-case-out re-
sampling method. Feature selection is performed as part of
the classifier design such that both the feature selection and
the classifier coefficient estimation procedures were repeated .
102 times, as each case was left out once as the test sample.
The test discriminant scores were analyzed using ROC
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methodology.?” The classification accuracy was evaluated us-
ing the area under the ROC curve, 4,, as well as the partial
area index, 4% . 4% is defined as the area under the ROC
curve above a sensitivity threshold of 0.9 (TPF;=0.9) nor-
malized to the total area above TPF,, which is equal to (1
~TPF,). %

E. Malignancy ranking by radiologists

Although all the cases in our dataset were suspicious
enough to warrant biopsy or fine needle aspiration, the de-
gree of difficulty of our cases can best be measured by in-
vestigating the accuracy of the radiologists in classifying the
cases in our dataset as malignant or benign. As described in

" Slice Number 46

) Slice Number 5
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F1G. 3. Left column: The segmented object for a malig-
nant mass (upper row) and a benign mass (lower row).
Middle and right columns: The lower and upper disk-
shaped regions from which texture features were ex-
tracted.

Sec. 11 B, one radiologist (RAD1) who was familiar with the
clinically obtained images had initially provided a malig-
nancy rating. To compare with the computer’s accuracy, we
are interested in measuring the accuracy of other radiolo-
gists, who would not be biased by memory or familiarity
with the cases. For this purpose, we have developed an in-
teractive graphical user interface with which the radiologists
could navigate through 3-D volumes, adjust the window and
level of the displayed images, and enter a malignancy rating
between 1 and 100 (a higher rating indicating a higher like-
lihood of malignancy) when they finish examining a case.
Three additional radiologists (RAD2—-RAD4) participated in
the malignancy rating study. The radiologists RAD1-RAD4

FIG. 4. Row 1: Five original slices of a
breast mass that was visible on a total
of ten US slices; row 2: The cross sec-
tion of the initial 3-D ellipsoid at each
slice; row 3: The result of the 2-D ac-
tive contour segmentation method;
row 4: The result of the 3-D active
contour segmentation method. Note
that the 2-D segmentation method
missed part of the mass on slice 46.
The 3-D segmentation method, appar-
ently using the information from slices
45 and 47, was able to provide better
segmentation on slice 46.
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FIG. 5. 3-D rendering of the segmented object for the mass shown in Fig. 4.
(a) 2-D active contour segmentation; (b) 3-D active contour segmentation.

were either fellowship trained in breast imaging or had over
25 years of experience in breast imaging. All four radiolo-
gists were MQSA qualified and their experience in mammo-
graphic and US interpretation ranged from 2 to 25 years
(mean, 11.3 years). The location of the mass center, as deter-
mined by RADI, was displayed on each slice, so that all the
radiologists would rank the same mass if more than one mass
existed in the volume. There was no time limitation for the
radiologists to read a case. The case reading order was ran-
domized for each radiologist. The malignancy rating was en-
tered by means of a slide bar. Before participating in the
study, the radiologists were trained on five cases that were
not part of the test dataset described in Sec. II A. The malig-
nancy rating study was intended to measure the difficulty of
the dataset, and was not intended to measure how the radi-
ologists’ interpretation would be affected by CAD. There-
fore, the computer classification results were not displayed to
the radiologists in this study.

lll. RESULTS

We evaluated the accuracy of characterization based on
both 2-D and 3-D active contour segmentation methods.
Rows 1 to 4 of Fig. 4 show the original images, radiologist-
defined ellipsoid, 2-D active contour results, and 3-D active
contour results for five consecutive slices of a mass that was
visible on a total of 10 slices. Figure 5 shows a 3-D render-
ing of the segmented object using the 2-D and 3-D active
contour models. It is seen from Fig. 5 that the shape of the
object segmented by the 3-D active contour model is
smoother in the z direction.

Table I shows the range (minimum and maximum) of the

TasLE II. The range of 4, values for the width-to-height feature and poste-
rior shadowing feature (PSF) extracted using the 3-D and 2-D segmentation
methods. The range indicates the minimum—maximum 4, values among the
mean, variance, minimum, and maximum of each feature extracted from
each slice containing the segmented mass.

Morphological
feature 3-D segmentation 2-D segmentation
Width-to-height 0.58-0.73 0.54-0.69
PSF 0.53-0.66 0.53-0.59
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TaBLE 1. The range of 4, values for different texture features extracted from
the lower and upper disk-shaped regions using the 3-D and 2-D segmenta-
tion methods. For each particular texture feature (e.g., IMC1 feature at
pixel-pair distance =2, and direction §=0°), the feature values from all the
slices containing the segmented mass were averaged before computing the
A, value. The range indicates the minimum-maximum 4, values for a par-
ticular feature among the parameters d=2, 4, 6 and #=0°, 90°,

3-D segmentation 2-D segmentation

Texture feature Upper Lower Upper Lower
IMCi 0.66-0.76  0.58-0.67  0.65-0.72  0.59-0.66 .
IMC2 0.65-0.75  0.58-0.65  0.65-0.73  0.61-0.67
DFE 0.58-0.68 0.61-0.67 0.56-0.68  0.62-0.70
ENT 0.59-0.64  0.55-0.60  0.62-0.69  0.58-0.62
ENE 0.57-0.63  0.53-0.60  0.53-0.60  0.50-0.54
SME 0.52-0.58  0.51-0.56  0.57-0.64  0.52-0.57

A, values provided by each texture feature alone, extracted
from the upper and lower disk-shaped regions determined by
the 2-D and 3-D active contour models. The ranges in this
table are for different pixel pair distances and directions used
in extracting the same feature (e.g., IMC1). Table II shows
the range of A, values provided by each morphological fea-
ture alone, using the 2-D and 3-D active contour models. The
ranges in Table II are for different methods of combining the
features extracted from individual slices, i.e., mean, variance,
minimum, and maximum. The most discriminatory feature in
this study was the IMC1 feature (d=6, 6=0°, extracted from
the upper disk-shaped region segmented by the 3-D method)
with an 4, value of 0.76.

When stepwise LDA was used to combine the features
into a discriminant score in the 102 leave-one-case-out train-
ing subsets, an average of 6.09 and 7.98 features were se-
lected with the 2-D and 3-D segmentation methods, respec-
tively. For the 2-D segmentation method, the most frequently
selected features were two IMCI1 features, two IMC2 fea-
tures, one DFE feature, and one width-to-height feature. For
the 3-D segmentation method, the most frequently selected
features were two IMC1 features, two IMC2 features, one
DFE feature, one ENT feature, one PSF feature, and one
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FiG. 6. The test ROC curves obtained by the classifiers that were based on
features extracted from the 2-D (4,=0.87) and 3-D (4,=0.92) active con-
tour models. The difference between the two A, values did not achieve
statistical significance (p=0.07).
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TaBLE III. The dependence of the computer classification accuracy on the variation of the initial contour. The
effects of three transformation parameters, namely, scaling, translation, and rotation of the initial ellipsoid, was
investigated by moving the initial ellipsoid using one of these three parameters at a time. A translation by =10
pixels in the image plane corresponded to approximately *1 mm.

Scale Rotation (degrees) x-translation (pixels) y-translation (pixels) 4,
1 0 0 0 0.92+0.03
1.3 0 0 0 0.89+0.03
0.8 0 0 0 0.89+0.03
1 0 10 10 0.90+0.03
1 0 10 —-10 0.87+0.04
1 0 -10 10 0.87+0.04
1 0 -10 -10 0.88+0.03
1 15 0 0 0.93+0.02

width-to-height feature. Figure 6 shows the test ROC curves
obtained by the LDA using leave-one-case-out resampling
for the 2-D and 3-D segmentation methods. The test 4, val-
ues for the 2-D and 3-D methods were 0.87+0.03 and 0.92
+0.03, respectively, and the A§°-9> values were 0.51*0.08
and 0.67+0.08, respectively. The difference between the two
test A, values did not achieve statistical significance (p
=0.07). Figure 7 shows the distribution of the discriminant
scores obtained from the 3-D method for the malignant and
benign cases.

In order to investigate the dependence of the classification
accuracy on the initialization of the 3-D active contour
model, we scaled, rotated, and translated the initial 3-D el-
lipsoid and repeated the steps of active contour segmenta-
tion, feature extraction, and classification for these modified
initial ellipsoids. The classification accuracies for these ex-
periments are presented in Table III. None of the differences
between the 4, values on Table III achieved statistical sig-
nificance.

The ROC curves for the radiologists’ malignancy ratings
are shown in Fig. 8. The computer and radiologist 4, values
and 4% values are compared in Table IV. The area 4,
under the ROC curve for radiologists RAD1-RAD4 varied
between 0.840.04 and 0.92+0.03, which are lower than or
equal to that of the 3-D computer classifier. The average 4,
value, obtained by averaging the slope and intercept param-
eters (@ and b in a ROC analysis) of the individual ROC
curves was 0.87. The difference between the 4, values of the
individual radiologists and the computer classifiers (2-D and

TABLE IV. The area under the ROC curve (4,), and the area under the ROC
curve above a sensitivity threshold of 0.9 (4{") for the computer classifier
using the 2-D and 3-D active contour segmentation results, and the four
radiologists. The radiologists’ results that are significantly (p<0.05) differ-
ent from the 3-D computer results are noted with an asterisk. '

4, 499
Computer classifier, 2-D segmentation 0.87£0.03 0.51+0.09
Computer classifier, 3-D segmentation 0.92+0.03 0.67+0.08
RAD!I 0.85+0.04 0.47+0.10*
RAD2 0.87%+0.03 0.38%0.11*
RAD3 0.92+0.03 0.45+0.15
RAD4 0.84+0.04 0.28+0.11*
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3-D methods) did not reach statistical significance (p
>0.05). The 4% values of the computer classifiers based
on 2-D and 3-D segmentation were consistently higher than
those of all four radiologists. The difference between the
AL? values of only one of the radiologists (RAD4) and the
classifier based on 2-D segmentation achieved statistical sig-
nificance (p=0.05). The differences between the 4% val-
ues of three of the four radiologists and that of the classifier
based on 3-D segmentation were statistically significant (p
=0.03, 0.02, and 0.001 for RAD1, RAD2, and RAD4, re-
spectively).

IV. DISCUSSION

The computer classifier designed in this study to charac-
terize breast masses on US volumes was able to discriminate
between malignant and benign masses that were suspicious
enough to warrant a biopsy. From Fig. 7, it is observed that if
an appropriate decision threshold was chosen for the dis-
criminant scores of the classifier based on 3-D segmentation,
more than 43% (20/46) of biopsied benign masses could be
correctly identified while no malignant masses were misclas-
sified (at 100% sensitivity). Based on 2-D segmentation, the
corresponding percentage of correctly identified benign
masses was 35% (16/46).
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FiG. 7. The distribution of the test discriminant scores for the classifier that
was based on 3-D active contour segmentation. By choosing an appropriate
decision threshold on these scores (e.g., decision threshold=0.3) more than
43% (20/46) of biopsied benign masses could be correctly identified while
no malignant masses would be misclassified.
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FiG. 8. ROC curves for the computer and for the four radiologists who
participated in the malignancy rating experiment. The difference between
the computer’s A, value and that of any of the four radiologists did not
achieve statistical significance. However, the computer classifier had signifi-
cantly higher (p<0.05) partial area index, 4%, than three of the four
radiologists at high sensitivity (TPF>0.9).

Lesion segmentation is an important task in computerized
lesion characterization. The segmentation of US images can
be challenging because boundaries are not always conspicu-
ous, due to the noise and contrast characteristics, and the
speckled nature of US images. For breast US, an additional
source of difficulty is the presence of posterior shadowing
artifacts, a major source of which is the US attenuation due
to the fibrous stroma caused by the tumor?’ Previous re-
search on the segmentation of breast masses on US images
includes work by Horsch et al.,*® Xiao et al.,*! and Madab-
hushi ef al* Their segmentation methods were applied to
2-D US images. In our study, we compared the classification
accuracy when 2-D and 3-D active contour models were
used for segmentation. The 2-D model provided reasonable
segmentation results for many of the masses. However, the
2-D model does not take advantage of the image information
in adjacent slices when a particular slice is being segmented.
If the 2-D active contour is misled on one slice, there is no
interaction from adjacent slices to improve the segmentation.
This is illustrated in Fig. 4, row 3. It can be observed that the
2-D segmentation results on slices #45 and #47 are reason-
able; however, part of the lesion is missed by the 2-D active
contour model on slice #46. Our 3-D active contour model
uses the smoothness of the segmented shape in the out-of-
plane direction as an interaction term between adjacent
slices. The 3-D segmentation results, shown in row 4, are
more consistent across slices. Figure 5 compares the seg-
mented object using the 2-D and 3-D methods for the entire
lesion, which was visible on a total of ten slices. It is again
observed that the lesion shape in the out-of-plane direction is
smoother for the 3-D method. Although our classification
accuracy using the 3-D method was satisfactory, further im-
provement may be required for applications such as accurate
lesion volume measurement. More sophisticated and inher-
ently 3-D methods, such as deformable surfaces® and level
set methods, may be good candidates for further improve-
ment.

The texture features in this study were extracted from
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disk-shaped regions at the upper and lower margins of the
mass on each slice. The total area of the two disk-shaped
regions was equal to the area of the segmented mass. From
Table 1, it is observed that a texture feature extracted from
the upper disk-shaped region tended to be more discrimina-
tory than the same feature extracted from the lower disk-
shaped region. The maximum of the range of 4, values (the
second number in each cell) was larger for the upper region
in 11 of the 12 comparisons that can be made (6 texture
features and 2 segmentation methods). The lower boundaries
of many masses were difficult to perceive and hence difficult
to automatically segment because of posterior shadowing.
This may have contributed to the difference of discrimination
ability between the features extracted from the upper and
lower regions. Another possible factor may be the changes in
the spatial and gray level resolutions in different regions of
the US image as the distance from the US probe increases.
Further work is underway to investigate the reasons for the
apparent lower discrimination ability of the features ex-
tracted from the lower disk-shaped regions.

Although the disk-shaped region depends on mass seg-
mentation, there can be a large overlap between the regions
from the 2-D and 3-D segmentation results if the objects
segmented by the two methods are not very different. From
Table 1, it can be observed that the ranges of 4, values for
2-D and 3-D segmentation for each texture measure have a
large overlap. As mentioned in Sec. III, when the stepwise
feature selection method was used for classifier design from
2-D segmentation results, an average of 6.09 features were
selected, where the average was computed over the 102
cycles of the leave-one-out partitioning of the dataset. Out of
the six most frequently selected features, five were texture
features and one was a morphological feature. The IMCI
feature was selected twice (at d=2, #=0° and d=6, §=90°),
the IMC2 feature was selected twice (at d=2, §=0° and d
=6, 0=0°), and the DFE feature was selected once (at d
=6, 6=0°). For 3-D segmentation, out of the eight most
frequently selected features, six were texture features, and
two were morphological features. The IMC1 feature was se-
lected twice (at d=2, 6=90° and d=4, 6=0°), the IMC2
feature was selected twice (at d=2, =0° and d=6, #=0°),
and the DFE feature was selected once (at d=6, 6=0°).
Thus, out of 11 most frequently selected texture features (5
for 2-D and 6 for 3-D segmentation), 10 were IMC1, IMC2, -
or DFE features. The classification accuracy with the step-
wise LDA for the 3-D segmentation (4,=0.92) was better
than that for 2-D segmentation (4,=0.87). However, the
difference did not achieve statistical significance (a two-
tailed p value=0.07).

The active contour method requires an initial boundary to
start iterating toward the optimal contour. In this study, the
initial boundary was defined by a 3-D ellipsoid that approxi-
mated the mass shape. The ellipsoid was placed in the vol-
ume by one of the radiologists (RAD1) using an interactive
graphical user interface (GUI). The radiologist thus had to
shift and scale a single object to define the initial contour.
Although the error between the true and approximated
shapes can be large when a single object is used for approxi-
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mating the mass, this method was faster than other possible
methods that would require initialization on each slice sepa-
rately, and was therefore preferred. The robustness of the 3-D
segmentation method to active contour initialization was
studied by translating, rotating, and scaling the 3-D ellipsoid.
There are many possibilities as to how these three operations
(moving, rotating, and scaling) can be combined to modify
the initial ellipsoid. In Table III, the classification results are
presented when these three operations are performed one at a
time. Row 1 shows the 4, value when the original ellipsoid
is used. The ellipsoid was scaled in rows 2—3, translated in
rows 4—6, and rotated in row 7. For the magnitudes of scal-
ing, translation, and rotation studied in Table III, the varia-
tion of the 4, value was within two standard deviations of
the A, value provided by the LABROC program.?’ In a step
toward automating the initialization of the contour, we are
currently investigating methods for automatically determin-
ing an initial contour from a rectangular box containing the
mass.

The comparison of the ROC curves by the radiologists
and the computer indicated that the computer can be as ef-
fective as the radiologists in differentiating malignant and
benign breast masses in this dataset. In fact, the accuracy of
the computer classifier using 3-D segmentation was greater
than three and equal to one of the radiologists, although the
difference between the computer and the individual radiolo-
gists in terms of 4, did not achieve statistical significance.
Furthermore, from Fig. 8, it is observed that the computer
has a tendency to be better at high sensitivity. This was also
confirmed by the statistically significant difference between
the computer classifier (3-D segmentation method) and three
- out of the four radiologists when the comparison was based
on the A‘(,o'g) values. It should be noted that the purpose of
our study was not to evaluate our US mass characterization
method in a clinical setting. As noted in Secs. I and II, the
semiautomated 3-D data acquisition system used in this
study is still under investigation and is different from that in
current clinical practice. The first difference is that, in our
department, radiologists interactively perform handheld US
examination themselves, which may yield better image qual-
ity and may result in higher characterization accuracy. The
second difference is that our study concentrated only on
mass characterization of lesions already detected, whereas
the actual detection of suspicious masses by US is a very
important step in a clinical examination. These other aspects
of comparing 3-D US images to US images acquired with
current clinical methods are subjects of future investigations.

In this study, the features were extracted from individual
US slices and then combined into object-based features, as
explained in Sec. IID. Although this method is found to
provide effective features in this study, it may not have fully
utilized the information available in the 3-D dataset. The
potential improvement in classification accuracy by using
truly 3-D features, for example, texture features extracted
from 3-D SGLD matrices, needs to be investigated. Further-
more, in clinical practice, the decision about whether the
mass is malignant or benign is made using both mammo-
graphic and US image information, as well as other pertinent
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patient information. A study is currently underway in our
laboratory to design a classifier that combines computer-
extracted features or scores from these two imaging modali-
ties.

V. CONCLUSION

A computer segmentation and classification method has
been developed for the task of the characterization of breast
masses on 3-D US images. On a dataset of 102 biopsy-
proven masses the classifier achieved an A, value of 0.92.
The average 4, value of four experienced radiologists on the
same data set was 0.87. The computer classifier was more
accurate than three and equal to one of the four radiologists
participated in the study. However, the difference between
the A4, values of the computer and the individual radiologists
did not achieve statistical significance for this dataset. At
high sensitivity, the computer classifier was consistently
more accurate than all four radiologists and achieved statis-
tical significance (p<0.05) for the difference in A§°'9) from
three of the four radiologists. The robustness of the iterative
segmentation algorithm in terms of the initial contour pro-
vided to the algorithm was studied. The classification accu-
racy was found to depend on the initialization; however, the
A, value did not significantly deteriorate when the initial
contour was scaled, rotated, or translated by a moderate
amount. Future work includes verifying the results of this
study by applying it to a larger and independent dataset,
expanding the feature space by designing truly 3-D features,
and combining the developed US characterization method
with mammographic characterization methods. The observer
performance study will also be performed to evaluate the
effects of CAD on the characterization of breast masses by
radiologists.
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Appendix 2

Multi-modality CAD: Combination of computerized classification
techniques based on mammograms and 3D ultrasound volumes for
improved accuracy in breast mass characterization

Berkman Sahiner”, Heang-Ping Chan, Lubomir M. Hadjiiski, Marilyn A. Roubidoux,
Chintana Paramagul, Mark A. Helvie, Chuan Zhou
Department of Radiology, University of Michigan, Ann Arbor

ABSTRACT

Mammography and ultrasound (US) are two low-cost modalities that are commonly used by radiologists for evaluating
breast masses and making biopsy recommendations. The goal of this study was to investigate computerized methods for
combining information from these two modalities for mass characterization. Our data set consisted of 3D US images and
mammograms of biopsy-proven solid breast masses from 60 patients. Thirty of the masses were malignant and 30 were
benign. The US volume was obtained by scanning with an experimental 3D US image acquisition system. After
computerized feature extraction from the 3D US images and mammograms, we investigated three methods (A, B and C)
for combining the image features or classifier scores from different mammographic views and the US volumes. The
classifier scores were analyzed using the receiver operating characteristic (ROC) methodology. The area A, under the
ROC curve of the classifier based on US alone was 0.88+0.04 for testing Two classifiers were designed using the
mammograms alone, with test A, values of 0.85+0.05 and 0.8710.05, respectively. The test accuracy of combination
methods A, B, and C were 0.89+0.04, 0.9240.03, and 0.93£0.03, respectively. Our results indicate that combining the
image features or classifier scores from the US and mammographic classification methods can improve the accuracy of
computerized mass characterization.

Keywords: Computer-aided diagnosis, mammography, 3-D ultrasound, breast masses, lesion classification

1. INTRODUCTION

Masses are important indicators of malignancy in breast imaging. However, only a small percentage of breast masses
evaluated on mammography and ultrasound (US) imaging are malignant."* Many benign masses may look suspicious
enough on mammography and US examination for the radiologist to recommend biopsy. As a result, a large percentage
of mass biopsies are performed for benign conditions. Benign biopsies not only causes patient discomfort and adds to
medical costs, but also may result in scarring that can complicate the interpretation of future radiological exams. It is
therefore very important to reduce the number of benign biopsies without missing any malignant masses.

Computer-aided diagnosis (CAD) can provide a consistent and reproducible second opinion to the radiologists, and has a
potential to assist them in reducing benign biopsies. In recent years, considerable research effort has been devoted to the
development of computerized feature extraction and classification methods for characterization of breast masses both on
mammograms and US images.!! Recent studies on the effect of computerized classification of breast masses on
radiologists’ characterization performance on mammograms indicate that radiologists’ characterization may be
significantly improved if they are aided by a well-trained CAD system.”'> Our recent studies also indicate that a similar
improvement may be achieved when the radiologists rate the likelihood of malignancy of breast masses on 3D US
images with computer aid. To our knowledge, no studies to date have investigated computerized classification of masses
using combined information from 3D US images and mammograms. The purpose of this study was to evaluate the
accuracy of different techniques for the combination of information from these two modalities in a computerized multi-
modality breast mass classifier.

* berki@umich.edu, phone 734-647-7429, CGC B2102, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0904
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2. METHODS

2.1 Feature extraction for classification of breast masses on mammograms

Mass segmentation
K-means clustering
Active contours

y v

Rubber band SPicu|at|°n
straightening detection
transform (RBST)
v v
Texture Morphological Spiculation
features features features

Figure 1: The block diagram of the mammographic mass segmentation and feature extraction method.

The block diagram of our segmentation and feature extraction method for mammographic masses is shown in Fig. 1.
The mass segmentation method" consisted of two parts: K-means clustering and active contour segmentation. The
purpose of the K-means clustering algorithm'® was to classify each pixel in the region of interest (ROI) as an object
(mass) or non-object (background) pixel, and to obtain an initial mass contour that would be refined using the active
contour model. In our clustering algorithm, a pixel (i,j) was represented by a feature vector, whose components were
obtained by filtering the original image by linear or nonlinear filters. We used three filtered images along with the
original image to form the feature vectors. After the K-means algorithm clustered the pixels in the ROI into object and
non-object classes, the boundary enclosing the object pixels was extracted to initialize our active contour segmentation
method. In the active contour model, this initial boundary was iteratively deformed under internal and external forces in
order to refine the mass boundary. The internal energy components were the continuity and curvature of the contour, as
well as the homogeneity of the segmented object. The external energy components were the negative of the smoothed
image gradient magnitude, and a balloon force that exerted pressure at a normal direction to the contour.

The active contour model was not suitable for the segmentation of spiculations because the curvature term in the model,
that was essential for the regularity of the mass shape, prevents the contour from having sharp corners. For this reason,
we designed an additional stage for the detection of spiculations. Spiculations on mammograms appear as linear
structures with a positive image contrast, and they usually lie in a radial direction to the mass. As a result of their
linearity, the gradient directions at image pixels on or close to the spiculation are more or less in the same orientation. In
order to investigate whether a pixel (ic,j.) on the mass contour lies on the path of a spiculation, one can make use of this
property as follows: In a search region S of the image, compute the statistics of the angular difference 6 between the
image gradient direction at image pixel (i,j), and the direction of the vector joining pixels (i.,jc), and (i,j). If a spiculation
extends from the pixel (i.,j.), then 8 will be close to /2 whenever the image pixel (i,j) is on the spiculation. Therefore,
the distribution of 8 (as the image pixel (i,j) sweeps the search region S) will have a peak around n/2. We defined a
spiculation measure based on the distribution of 6. Figure 2.a plots the spiculation measure as (ic.j;) moves
sequentially along the mass contour for the spiculated mass shown in Fig. 2.b, which was segmented using our active
contour method. The locations of some of the local maxima in Fig. 2.a are also shown in Fig.2.b. It is observed that the
maxima in Fig. 2.a correspond to locations where a linear structure extends from the mass. For the segmentation task,
we computed the spiculation measure for a sequence of 30 contours. The first contour in the sequence was that provided
by the active contour model. The following contours in the sequence were obtained by expanding the previous contour
by one pixel, so that the spiculation measure was computed in a 30-pixel wide band around the mass. The resulting
image in the 30-pixel-wide band around was named the spiculation likelihood map. Finally, the spiculation likelihood
map image was used for segmenting the spiculations'. The resulting spiculation likelihood map and the final segmented
masses are shown in Fig. 3.
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Figure 2: (a) The spiculation measure as a function of the location of the pixel (i,j) around the mass contour (b) The locations of
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Figure 3: (a) The active-contour segmentation, (b) spiculation likelihood map, and (c) and the final segmentation result

After segmentation, morphological features were extracted from the segmented mass shapes. The extracted features
included a Fourier descriptor, convexity, rectangularity, perimeter, contrast, circularity, perimeter-to-area ratio, area,
normalized radial length (NRL) mean, NRL entropy, NRL area ratio, NRL standard deviation, and NRL zero crossing
count.

Three spiculation features were extracted from the spiculation measure defined for the pixels along the boundary of the
mass (an example of the spiculation measure is shown in Fig. 2.a). The first feature (AVG) was the average of the
spiculation measure for all pixels on the mass boundary. The second feature (PERC_ABYV) was the percentage of border
pixels with a spiculation measure larger than 7/4, and the third feature (AVE_ABV) was the average of the spiculation
measure for those pixels with a spiculation measure larger than /4. In addition, two spiculation features were extracted
from the spiculation likelihood map defined in a band of pixels around the mass (an example of the spiculation
likelihood map is shown in Fig. 3.b). The first feature (S_RATIO) was the percentage of the pixels within the ring-
shaped area around the mass that were estimated to be spiculation pixels. The second feature (NS) was the product of
the number of individual spiculations detected in the ring-shaped area and the S_RATIO feature.

We also extracted texture features from the band of pixels surrounding the mass. First, the band was transformed into

Cartesian coordinates using the rubber-band straightening transform.® Then, RLS matrices, which describe the run-
length statistics for each gray-level value in the image, were obtained from the vertical and horizontal gradient
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magnitudes of the RBST images. From each RLS matrix, five texture measures, namely, short runs emphasis, long runs
emphasis, gray-level nonuniformity, run-length nonuniformity and run percentage, were extracted in the horizontal and
vertical directions.’

2.2 Feature extraction for classification of breast masses on 3D US volumes

The block diagram of our segmentation and feature extraction method for mammographic masses is shown in Fig. 4.

Mass segmentation
3D active contour mode!

Texture Width-to- Shadowing
features height features features

Figure 4: The block diagram of the segmentation and feature extraction method for masses on US volumes.

The 3D US images were acquired using an experimental system previously developed and tested at our institution."
The images were digitally stored and transferred to the workstation for processing. The biopsied mass in each volume
was identified by an experienced radiologist using clinical US and mammographic images to confirm that the 3D images
contained the suspicious mass. The radiologist was also asked to fit a 3D ellipsoid to the mass. The 3D ellipsoid was
used to initialize the 3D active contour segmentation. In addition to the energy terms described above for our 2D active
contour model, the 3D active contour model contained an additional curvature energy term related to the smoothness of
the mass in the z-direction. Our results indicated that the use of this term increased the accuracy of 3D segmentation.'s
Figure 5 shows the result of the 3D segmentation algorithm for five consecutive slices of a mass.

After mass segmentation, morphological and texture features were extracted from each slice containing the mass. The
morphological features included the width-to-height and posterior shadowing features. Both of these characteristics are
known to be good indicators of malignancy.”” The definitions of these features can be found in the literature.® The
texture features were extracted from SGLD matrices derived from 2D slices of the 3D data set. It is known that the
margin characteristics of a mass are very important for its characterization, and previous studies have indicated that
texture features extracted from the mass margins are effective for classification.'® For this reason, the texture features
were extracted from two disk-shaped regions containing the boundary of each mass. Six texture feature measures that are
invariant under linear, invertible gray scale transformations were extracted. More details about texture features used in
this study can be found in the literature.?

Figure 5: The segmentation result on five consecutive slices of a 3-D mass from our data set. This mass was seen on a total of 14
slices in the 3-D data set.
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2.3 Combination methods

There are a number of strategies for designing a classifier that combines image information from different modalities.
The first strategy is to design classifiers for each modality separately, and then to combine the classifier scores. The
second strategy is to combine the features from the two modalities using a single classifier.

Considering the first strategy, there are again a number of classifier design options for each modality. For the 3D US
volumes, the features were extracted from each slice, as described in the previous section. One can therefore consider
the following two US classifiers for characterizing each mass case: (1) first develop a slice-based classifier that provides
a malignancy score for each slice of each mass, and then combine the scores from different slices into a case-based
classifier; and (2) first combine the feature vectors from different slices of the same mass into a case-based feature
vector, and then design a case-based classifier. These two classifiers are called US, and US,, respectively, in the
following. For the mammograms, the features were extracted from each view containing the mass. For mammography,
two classifiers parallel to US; and US, are: (1) first develop a view-based classifier, and then to combine the classifier
scores from each view into a case-based classifier; and (2) first combine the feature vectors from different views into a
case-based feature vector, and then design a case-based classifier. These two classifiers are called MAM; and MAM, in
the following. Since the combination methods and the classifiers may not be linear, the classifiers designed using
options (1) and (2) are, in general, different.

For each strategy or option, there are numerous methods to design a classifier and to combine features or classifier
scores. In this study, we limited the classifier design method to linear discriminant analysis (LDA) with stepwise feature
selection, and limited the combination operation to averaging. Among many alternatives for the overall multi-modality
classifier design, we compared three: Methods A, B, and C. Methods A and B were based on designing classifiers for
each modality separately, and then combining the classifier scores. In method A, we combined classifiers MAM,; and
US, defined above. In method B, we combined classifiers MAM, and US,. Method C was based on first pooling the
case-based feature vectors from mammography and US to define a larger feature space, and then designing a single
classifier. These methods are summarized in Table 1.

Method A | Average the scores of the classifiers MAM, and US, described in the text

Method B | Average the scores of the classifiers MAM, and US, described in the text : :
Method C | Define case-based feature vectors for mammography and US by averaging the feature vectors from
different views or slices. Pool these vectors to define a combined feature space, and design a single
classifier in the combined feature space.

Table 1: A summary of Methods A, B, and C used for designing the multi-modality classifier
24 Data set

Our data set consisted of US volumes and mammograms from 60 patients who had a mammographically visible solid
mass deemed suspicious or highly suggestive of malignancy. All patients underwent biopsy or fine needle aspiration.
Thirty of the masses were malignant and 30 were benign. The biopsied mass on the mammograms and the US volumes
was identified by an MQSA (Mammography Quality Standards Act) qualified radiologist using clinical images and case
reports to confirm that the identified region contained the biopsied mass. The majority of the malignancies were
invasive ductal carcinoma (N=26) and the majority of benign masses were fibroadenoma (N=14) and fibrocystic disease

(N=4).
3. RESULTS

The classifiers were trained and tested using a leave-one-case-out method. The test classification accuracy of the single-
~modality classifiers MAM,, MAM, and US, in terms of the area A, under the receiver operating characteristic (ROC)
curve is shown in Table 2. It can be observed that the accuracy of the classifiers MAM, and MAM, were lower than
that of the US classifier; however, the difference did not reach statistical significance. The classification accuracy of the
multi-modality classifiers A, B, and C are also shown in Table 2. It can be observed that the accuracies of all three
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multi-modality classifiers are higher than those of the single-modality classifiers. The two-tailed p-values obtained by
comparing the A, values of the single-modality and multi-modality classifiers are also listed in Table 2. The difference
between the compared A, values did not reach statistical significance, although there seems to be a strong trend that the
multi-modality classifiers perform better.

Two-tailed p value compared to method
Classifier Case-based A,
A B C

Mammography alone (MAM,) 0.85+0.05 0.08 0.07 0.09

Mammography alone (MAM,) 0.87+0.05 >0.1 0.10 >0.1

US alone (US;) 0.88+0.04 >0.1 >0.1 0.09
Combination method A 0.8910.04
Combination method B 0.9240.03
Combination method C 0.9310.03

Table 2:  The classification accuracies of the single-modality classifiers (MAM1, MAM2, and US2), and multi-modality classifiers
(Methods A, B, and C) that were investigated in this study.
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In order to visually compare the distribution of the scores of individual masses under different modalities, the scatter plot
of the MAM, and US, classifiers used in Method B are shown in Fig. 6 as an example. The scores from these two
single-modality classifiers were not highly correlated (Pearson correlation coefficient = 0.54) so that the combination
had a potential to achieve higher accuracy. The corresponding ROC curves, as well as the ROC curve for the
combination, are shown in Fig. 7.

4. DISCUSSION AND CONCLUSION

To make a biopsy recommendation for a breast mass, radiologists routinely examine a patient’s mammograms and the
US images. These two modalities provide complementary information to the radiologists for more accurate diagnosis
compared to that from a single modality. Despite the increased accuracy with these two modalities, the positive
predictive value of biopsy recommendations is still low, and the radiologists may benefit from a multi-modality CAD
system. In this study, we compared different methods for combining the information from mammograms and 3D US
examinations for improving the accuracy of our computerized mass characterization system.

There are many ways in which computer-extracted diagnostic information from two modalities can be combined. In this
study, we compared three methods. The Methods A and B were based on designing separate classifiers for US and
mammography, and averaging the classifier scores from the two modalities at the end. Method C was based on pooling
the extracted features from different modalities into a larger feature space, and designing a single classifier based on this
feature space. Our results indicated that all three methods could improve the classification accuracy compared to those
of single-modality classifiers. The difference, however, did not reach statistical significance, possible due to the small
sample size. ’

We plan to enlarge our data set to investigate if the observed improvement with multi-modality CAD is generalizable,
and to test the statistical significance of the difference between the multi- and single-modality classifiers. We will also
investigate other multi-modality combination methods that were not tested in this study. Finally, we will perform
observer performance studies to investigate the effect of our multi-modality computer classifier on radiologists’ accuracy
in characterizing malignant and benign masses.
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ABSTRACT

Purpose: We have previously developed an automated computer classifier for
characterization of malignant and benign breast masses in 3D ultrasound volumes. The
purpose of this study was to investigate if computer aided diagnosis (CAD) using this

classifier would improve radiologists' accuracy.

Materials and Methods: Our data set contained 3D ultrasound volumes from 102 cases
of biopsy-proven breast masses (46 benign and 56 malignant). The 3D ultrasound
volumes were recorded digitally while the transducer was translated across the lesion. A
computer algorithm was designed to automatically delineate the mass boundaries and
extract features based on the segmented mass shapes and margins. The features were
merged into a malignancy score using a computer classifier. Five experienced
radiologists participated as observers. Each radiologist read the cases first without CAD,
immediately followed by reading with CAD. The observers’ rating data were analyzed
using receiver operating characteristic (ROC) methodology. The statistical significance
of the differences was estimated by the Dorfman-Berbaum-Metz method and with the

Student’s two-tailed paired t test.

Results: Without CAD, the five radiologists had an average area under the ROC curve,
A, of 0.84 (range: 0.81 to 0.87). With CAD, their average A, increased significantly

(p=0.006) to 0.90 (range: 0.86 to 0.93). Using a 2% likelihood of malignancy as the

~ threshold for biopsy recommendation, the average sensitivity of the radiologists




increased from 96% to 98% with CAD, while their average specificity for this data set
decreased from 22% to 19%. If a biopsy recommendation threshold could be chosen
such that the sensitivity were maintained at 96%, the specificity would increase to 46%

with CAD.

Conclusion: A well-trained computer algorithm may improve radiologists' accuracy in

characterizing breast masses as malignant and benign on ultrasound images.

Key Words: Computer-Aided Diagnosis, ROC Observer Study, Classification,

Ultrasound, Malignancy.



INTRODUCTION

In current clinical practice, the positive biopsy rate for breast cancer is about 15-
30% (1-3). To reduce patient anxiety and morbidity, as well as to decrease health care
costs, it is desirable to reduce the number of benign biopsies without missing
malignancies. Previous studies on mammography have shown that radiologists’
accuracy in distinguishing malignant from benign masses can significantly improve
when they use a well-trained computer-aided diagnosis (CAD) system as a second
opinion. Chan et al. (4) performed an observer performance study in which six
Mammography Quality Standards Act (MQSA) qualified radiologists rated the
likélihood of malignancy of 238 biopsy-proven masses on a scale of 1 to 10 without and
with a computer aid. The area A, under the receiver operating characteristic (ROC)
curve for the six radiologists ranged from 0.79 to 0.92 without CAD, and improved to
0.87-0.96 with CAD. The improvement was statistically significant (p=0.022). When
the same radiologists read a subset of 76 paired views, their A, was again significantly
improved by CAD (p=0.007). In a study by Huo et al. (5) for differentiation of
malignant and benign masses on 110 mammographic cases, the use of CAD improved
the average A, value of 12 radiologists from 0.93 to 0.96 (p<0.001). Recently, Hadjiiski
et al. (6) found that CAD can improve significantly (p=0.001) radiologists; accuracy
from an A, in a range of 0.74-0.88 without CAD to a range of 0.76-0.92 reading
sequentially with CAD when they interpret temporal pairs of masses on mammograms.

Ultrasound (US) is an important imaging modality for characterization of breast
masses. For the differentiation of simple cysts from other lesions, interpretation of US

images by experienced breast radiologists results in an accuracy close to 100% (7). In



current clinical practice, if a palpable or mammographically suspicious mass cannot be
confidently categorized as a cyst in US examination, it is often recommended for biopsy.
Several recent studies (8-10) have indicated that the improvement in US imaging
technology and the expert interpretation by radiologists may make it possible to
characterize solid breast masses as malignant and benign with high accuracy. In a recent
publication, Taylor et al. (10) reported that the addition of US evaluation to
mammography alone increased the specificity in their data set of 761 biopsy-proven
masses from 51.4% to 63.8%, while slightly increasing the sensitivity from 97.1% to
97.9%.

Several groups of researchers have been developing methods for computerized
characterization of masses on 2-dimensional US images (11-14). We have recently
developed an automated computer classifier for differentiation of malignant and benign
breast masses in 3-dimensional (3D) US volumes (15). The purpose of this study was to
investigate the effect of our computer classifier on radiologists’ accuracy in
discriminating between malignant and benign masses using 3D volumetric ultrasound
images. Both the radiologists and the CAD algorithm analyzed 3D volumetric images of
the masses which had been saved as cine-loops. To our knowledge, this is the first
observer study to evaluate the impact of a CAD algorithm designed for 3D US images on
radiologists’ accuracy.

MATERIALS AND METHODS
Data Set
The data collection protocol was approved by our Institutional Review Board

prior to the commencement of the study. Individual patient informed consent was



obtained from all subjects. The group of imaged patients consisted of 130 consecutive
patients who agreed to have a 3D breast US examination between 1998 and 2002.
Eligibility criteria for subjects included women of any age who had a sonographic mass
deemed suspicious or highly suggestive of malignancy, and who were scheduled for
biopsy or fine needle aspiration. Twenty-eight patients from this study group were
excluded as follows: patients who had prior biopsy in the same region of the breast, those
with simple cysts, scans which were deemed technically unsuccessful because of motion
or other artifaéts, masses which were incompletely imaged in any dimension because of
large size or eccentric position in the scan. Thus our study group consisted of 102
patients (average age: 51 years). Based on biopsy or fine needle aspiration results, 56
masses were malignant and 45 were behign. One of the masses resolved after imaging,
and the patient was cancer-free after three year follow-up. Forty-three of the
malignancies were invasive ductal carcinoma, 5 were invasive lobular carcinoma, 3 were
ductal carcinoma in-situ, one was medullary carcinoma, and 4 were other invasive
carcinoma. Of the biopsy-proven benign masses, 18 were fibroadenoma, 12 were
fibrocystic disease, 8 were cyst, 2 were fat necrosis, 2 were scar tissue, one was fibrosis,
one was granuloma, and one was other benign breast tissue. The mean lesion diameter
was 1.28 cm (standard deviation = 0.78 cm).

The 3D US data were acquired using an experimental system that was previously
developed and tested at our institution (16, 17). The 3D system consisted of a
commercially available GE Logiq 700 (Milwaukee, WI) US scanner with an M12 linear
array transducer, a mechanical transducer guiding system, and a computer workstation.

The linear array transducer was operated at 11 MHz. The technologist was free to set the



focal distance and the overall gain adjustment to obtain the best possible image. Before
3D image acquisition, the technologist used clinical US and mammogram images and
reports to identify the suspicious mass. During 3D image acquisition, the technologist
manually translated the transducer linearly in the cross-plane, or the z-direction, while the
image acquisition system recorded 2D B-mode images in the image scan plane (x-y
plane). The 2D images were obtained at approximately 0.5 mm incremental translations,
which were measured and recorded using a translation sensor. The scanned breast region
measured typically 4.5 cm long by 4.0 cm wide by 4.0 cm deep. The typical in-slice
pixel size was approximately 0.11 mm X 0.11 mm.

The B-mode images were recorded into a buffer in the US scanner. After data
acquisition, the images and the position data were transferred digitally to a workstation,
where individual planes were cropped and stacked to form a 3D volume. The biopsy-
proven mass in each volume was identified by an MQSA (Mammography Quality
Standards Act) qualified radiologist, referred to as RADO in the following, using clinical
US and mammographic images to confirm that the 3D images contained the mass of

interest and showed the mass in its entirety.

Computerized Classification of Masses in US Volumes

The details of our CAD system developed for the classification of masses in 3D
US volumes can be found in the literature (15). A summary of the method is provided
below.

The first step of the CAD system involved the extraction of the mass boundaries

in the 3D volume, i.e., mass segmentation. Automated segmentation of breast masses on




US images is a difficult task because of image speckles, posterior shadowing, and the
variations of thé gray level both within the mass and in the normal breast tissue. We
developed a 3D active contour model for segmentation. The active contour model
combined the prior knowledge about the relative smoothness of the 3D mass shape in US
volume with the information in the image data. An example of the segmented mass
slices for a malignant mass is shown in Figure 1.

After mass segmentation, image features were extracted from the mass and its
margins for classification. Our feature space consisted of width-to-height ratio, posterior
shadowing, and texture descriptors. The mass shape in terms of relative width to height
was described by the ratio of the widest cross section of the automatically segmentéd
lesion shape to the tallest cross section. Posterior shadowing features were defined in
terms of the normalized average gray-level values in strips posterior to the mass.

Texture features were extracted from two disk-shaped regions containing the boundary
of each mass, as well as presumably mass and normal tissue adjacent to the boundary of
the mass. These regions followed the contour determined by the active contour model.
An illustration of the regions used for computing the posterior shadowing and texture
features is shown in Figure 2. For additional details about the feature definitions, please
refer to the Appendix.

The features described above were extracted from each slice of the US volume
containing a mass to define slice-based features. For a given mass, features extracted
from different slices were combined to define case-based features. Linear discriminant
analysis (LDA) with stepwise feature selection (18) was applied to the case-based feature

vectors to obtain computer-estimated malignancy scores. A leave-one-case-out




resampling method (19) was used for training and testing of the classification system.
The test scores obtained by the leave-one-out partitioning method were used as the
malignancy scores in the observer performance study. Two Gaussian functions were
fitted to the distributions of the malignancy scores of the benign and malignant classes

separately, and were used in the observer performance study as described below.

Observer Performance Study

Five radiologists (RAD1-RADS), different from the one who was involved in
data set collection (RADO), participated as observers. The radiologists RAD1-RADS5
had an average of 13 years of experience in mammographic and breast US interpretation
(range: 3-26 years) in practice in an academic radiology department at a National Cancer
Institute-designated comprehensive cancer center. They were all MQSA qualified. Four
were fellowship-trained in breast imaging, and one had 26 years of experience in breast
imaging. At our department, about 4300 breast US examinations are performed
annually.

An interactive graphical user interface (GUI), shown in Figure 3, was developed
to facilitate the navigation through 3D volumes, and to adjust the window and level of
the displayed images. The location of the mass center, as determined by RADO, was
displayed on each slice, so that all the radiologists would rank the same mass if more
than one mass could be seen in the volume.

During the experiment, an observer first read a case without CAD. This involved
assessing mass characteristics in six categories such as shape, margins, echogenicity, and

through transmission using the GUI, and providing an estimate of the likelihood of
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malignancy (LM) for the case on a scale of 0 to 100%. The complete list of the
categories and the descriptors within each category are shown in Table 1. A button
corresponding to an LM rating of 0% was provided for benign masses, and another
button corresponding to LM ratings of less than 2% was provided for probably benign
masses. This second button was set to correspond to the ACR-BIRADS category 3
(probably benign finding) for which short-interval follow-up is recommended (20). The
radiologists used a slide bar to enter their ratings between 3% and 100%. The discrete
buttons facilitate the selection of these LM ratings more precisely for the benign and
probably benign masses because our previous experiences indicate that thé uncertainty of
selecting ratings on a slide bar by observers can be much greater than 2%. The observers
were reminded at the beginning of the study that if they rated a mass as having larger
than 2% of LM, it would indicate that they would recommend the mass for biopsy (20,
21).

We used a two-step sequential reading design. The radiologist first read the US
volume without CAD, and rendered an estimate of the LM. The estimate without CAD
was stored in a computer file, and the radiologist was not able to modify it after seeing
the computer results. Immediately after reading without CAD, the computer-estimated
malignancy score for the case was displayed on the screen, and the radiologist rendered
an estimate of the LM with CAD. The computer’s malignancy score is on a relative
rating scale and cannot be easily converted to the likelihood of malignancy of the
masses. We therefore linearly mapped and rounded the computer’s malignancy score to
an integer between 1 and 10 before displaying the score on the GUIL. In order to provide

a reference of the computer performance to the radiologists, the fitted Gaussian
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distributions to the computer scores for the malignant and benign classes were also
displayed on the interface. The radiologists had the option to keep their original
malignancy rating, or change it using the slide bar after taking into consideration the
computer’s opinion.

There was no time limit for the radiologists. The case reading order was
randomized for each radiologist. In order to reduce the effect of fatigue on the
radiologists’ performance, the data set was read in three separate sessions by each
radiologist. Before participating in the study, the radiologists were trained on five cases
that were not part of the test data set. They were familiarized with the study design, the
functions on the GUI, and the computer’s relative malignancy rating scale during the

training session.

Data Analysis

There is no ground truth for the mass characteristics such as echogenicity and
through transmission, since they are judged subjectively by radiologists. To summarize
the assessments of the mass characteristics, a “majority assessment” for each category
was determined according to the majority rule by the six radiologists (RADO-RADS).
The majority rule determined which one of the descriptors was selected by the largest
number of radiologists. For example, if one radiologist described the echogenicity
characteristics of a mass as hypoechoic, three as markedly hypoechoic, one as anechoic,
and one as heterogeneous, the majority assessment for echogenicity of the mass would
be markedly hypoechoic. When there was a tie between two descriptors, we used the

descriptor chosen by RADO, who was very familiar with the cases due to the role in data
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collection, as the tie-breaker. If there was a tie, and the original descriptor provided by
RADO was not one of the descriptors that were tied, RADO was asked to re-read the
images and choose one of the tied descriptors.

The LM ratings of the radiologists with and without CAD were analyzed using
ROC methodology. The area under the ROC curve, A,, and the partial area index above
a sensitivity of 0.9, Az(°'9) (22) were used as the accuracy measures. For an individual
radiologist, the significance of the change in accuracy with CAD was also analyzed
using ROC methodology. For the group of five radiologists, the significance of the
change in accuracy with CAD was tested using the Dorfman-Berbaum-Meti (DBM)_
multi-reader multi-case (MRMC) methodology (23) and also using Student’s two tailed
paired t-test. The sensitivity and specificity of each radiologist with and without CAD
were compared using an LM rating of 2% as the threshold above which biopsy would be
recommended (20, 21).

In addition to analyzing the change with CAD in the number of cases for which
the LM rating moved across the biopsy threshold of 2%, we also examined the number
of cases for which the CAD resulted in a substantial change in the LM rating. We
defined a substantial change as an absolute value difference of larger than or equal té 5
between LM ratings with and without CAD. The substantial decreases and increases in
the ratings of malignant and benign cases were examined. For each mass, we also
averaged the changes in the LM ratings for the five radiologists, and compared how

CAD changes the average LM ratings for malignant and benign masses.
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RESULTS

The majority assessments for the masses in our data set are shown in Table 1. A
total of 96 masses were categorized as solid according to the majority rule. Five masses
were categorized as complex cysts, and one as a simple cyst by three or more
radiologists. One mass that was categorized as a complex cyst was malignant, and the
remaining five non-solid masses were benign. The most common margin descriptor for
malignant masses was ill-defined (46%), and that for benign masses was circumscribed
(59%). Most of the malignant masses had irregular shape (59%) and most of the benign
masses had oval shape (70%). Most of the masses (76% of benign masses and 64% of
malignant masses) were categorized as hypoechoic. Calcifications were seen in 2% of
benign masses and 25% of malignant masses.

The ROC curves of the five radiologists without and with CAD are shown in
Figures 4a and 4b. The A, values without CAD were in the range between 0.81 to 0.87
without CAD, and 0.86 to 0.93 with CAD. The average ROC curves for the radiologists
with and without CAD were derived from the average a and b parameters, which‘were
defined as the means of the individual radiologist’s a and b parameters for the fitted ROC
curves shown in Figure 5. The average ROC curves are shown in Figure 5 along with
the test ROC curve of the computer classifier, which had an A, value of 0.92.

Table 2 shows the individual radiologist’s A, and AZ(O'Q) values with and without
CAD, and the Student’s two-tailed p-values for the change in both accuracy measures
with CAD. Table 3 lists the average A, and A,*” values, and the corresponding two-
tailed p values estimated using the DBM method or the Student’s paired t-test. The

average A, value improved from 0.84 to 0.90 with CAD. The improvement in A, was
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statistically significant for the individual radiologists, as well as for the group of five
radiologists. The average A, value improved from 0.30 to 0.47 with CAD. When the
five radiologists were analyzed as a group, the improvement in Az(o.g) was statistically
significant; howéver, when analyzed individually, the improvement in A, did not
reach statistical significance for three out of the five radiologists.

The sensitiyity and specificity of each radiologist with and without CAD at an
LM threshold of 2% are listed in Table 4. On the average, the radiologists’ sensitivity
increased from 96% to 98% with CAD, at the cost of a decrease in specificity from 22%
to 19%. Three of the radiologists showed an increase in sensitivity while two maintained
a sensitivity of 100%. The specificity of three radiologists decreased with CAD, while
one radiologists’ specificity increased and one did not show any change. Table 4 also
shows the sensitivity and specificity for each radiologist if the LM threshold were to be
adjusted to 7% when they read with CAD, for which the average sensitivity would
remain at 96% (same as that without CAD) while the average specificity would increase
to 46%.

With 102 cases and five radiologists, we had a total of 510 pairs of LM ratings
with and without CAD. Figure 6 shows a histogram of the change in the radiologists’
LM ratings with CAD for these 510 readings. The radiologists did not change their LM
rating substantially (i.e., within 5) with CAD in 64% (326/510) of the readings. For
malignant masses, the ratings were substantially increased for 34% (95/280) and
decreased for 7% (19/280) of the readings. For benign masses, the ratings were

substantially increased for 14% (32/230) and decreased for 17% (38/230) of the readings.
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Figure 7 shows the histogram of the mean change in the LM ratings for malignant
and benign masses. To obtain the mean change for a mass, the changes with CAD from
five radiologists were averaged. To statistically evaluate the change for malignant and
benign masses, we performed one-sample t-tests on the mean changes. For benign
masses, the decrease in the average LM rating was 0.77, which did not achieve statistical
significance (two-tailed p=0.51). The increase in the average LM rating of malignant
mﬁsses was 5.59, which was statistically significant (two-tailed p<0.0001).

As described at the beginning of this section, 96 masses were categorized as solid
by the majority rule. To investigate how the radiologists performed for this subset of
cases, we applied ROC analysis to this subset by excluding cases that were categorized
as complex or simple cysts. The average A, values without and with CAD for this subset
were 0.84 and 0.90, respectively, unchanged from the set of 102 cases. The
improvements in A, for the individual radiologists as well as for all radiologists as a

group were statistically significant (p<0.05).

DISCUSSION

Our results indicate that the CAD algorithm used in this study was able to assist
even expert breast imaging radiologists in characterizing masses on 3D US volumes. At
our institution, all clinical breast US examinations are performed by breast imaging
radiologists, not sonographers, and therefore they are particularly experienced in
assessing whole volume images. Nevertheless, our CAD system could improve their
accuracy in terms of the A, and A% values. The average A, value improved

significantly (p=0.005) from 0.84 to 0.90, and the average A, value improved
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significantly (p=0.015) from 0.30 to 0.47. The area under the ROC curve for the
computer classifier (A, =0.92) was higher than those of all radiologists without CAD in
the study. With CAD, all radiologists showed a significant improvement in their A,
values, and one radiologist’s A, value surpassed that of the computer classifier.

All of the masses in this study were deemed suspicious or highly suggestive of
malignancy at the time of data collection. During the observer experiment, 96/102
(94%) of the masses were assessed as solid according to the majority rule. When the
analysis was limited to this subset of solid masses, the A, values with and without CAD,
and the significance of the improvement with CAD were essentially unchanged
compared to the results with the entire data set of 102 cases. This implies that CAD
would be helpful for the interpretation of the more difficult category of solid masses.

The effect of CAD was mixed when measured in terms of the radiologists’
sensitivity and specificity values at the threshold of biopsy recommendation (LM of 2%).
With CAD, the average sensitivity of the five radiologists increased from 96% to 98%,
while their average specificity for this data set decreased from 22% to 19%. Without the
benefit of the malignancy ratings record;ad in the observer experiment, it would not have
been possible to ascertain whether these changes in the specificity and sensitivity reflect
only a shift in decision threshold along the same ROC curve. Our malignancy rating
data strongly suggests that this is not the case, as evidenced by the significant
improvement in the ROC curves. Since all lesions except one in our data set underwent
biopsy or fine needle aspiration after clinical imaging, the relatively low specificity of

the radiologists with or without CAD is not unexpected.
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The ultimate clinical utility of a CAD system that results in an increased

sensitivity at the cost of decreasing specificity depends on a cost/benefit analysis of the
different correct and incorrect decisions. Alternatively, by appropriate training, it may
be possible to translate the benefits with CAD into biopsy decisions that surpass unaided
reading in terms of both sensitivity and specificity, or an improvement in specificity
without reducing sensitivity. For example, for our data set, if the threshold for biopsy
with CAD could be changed to an LM rating of 7%, the average specificity with CAD \
would have been improved to 46%, compared to 22% without CAD, while the average
sensitivity would remain at 96% as noted above.

Since the “cost” of failing to biopsy a malignant lesion is much greater than that
of a benign biopsy, it can logically be expected that radiologists may tend to use the
CAD system to confirm and increase their LM estimate of malignant lesions while not
easily reducing the LM estimate of low suspicion lesions. This will result in an overall
increase in radiologists’ LM ratings. Figure 6 suggests that this is indeed the case in our
study. While the ratings for malignant masses demonstrated a stronger trend to increase
than to decrease with CAD, the ratings for benign masses did not show a strong trend
either way. It is also hoted that the radiologists’ ratings showed little or no change (less
than 5%) for a large percentage (64%) of the masses; It therefore appears that
radiologists tend to be very conservative in downgrading the LM of a lesion. As a result,
the observed improvement in the radiologists’ accuracy in this study was obtained
mainly from an increase in the LM ratings of malignant masses. This led to an increase
in sensitivity and a slight decrease in specificity. However, since the ROC curves of all

radiologists did improve with CAD, there is a potential that the radiologists can adjust
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their decision thresholds along the higher ROC curves and thus increase the sensitivity as
well as the specificity. Alternatively, it may be possible to convince them to reduce the
LM ratings of masses that the CAD system rates as very low suspicion, thus improving
the specificity. These improvements may be realized after radiologists accumulate
experiences and increase their confidence with the use of CAD.

The assessment of mass characteristics shown in Table 1 helped us better identify
the properties of our data set. It was reported that a systematic analysis of the
characteristics of breast lesions guided by a checklist could improve radiologists’
diagnostic accuracy (24). The list of mass descriptors collected in this study is similar to
that in the ultrasound BI-RADS lexicon recently published by the American College of
Radiology (20). However, since the BI-RADS lexicon for breast US had not been
published at the time of the study, the descriptors are not exactly the same. A study by
Rahbar et al. (25) investigated the correlation of US features and tissue diagnosis.’
Similar to our study, the most common shape and margin descriptors for benign masses
in that study were round or oval shape and circumscribed margins, and the most common
shape and margin descriptors for malignant masses were irregular shape and ill-defined
margins.

A number of research groups have been developing CAD systems for breast mass
characterization on US images in recent years. (12-15). Chen et al. (13) used
morphological features extracted from hand-segmented mass boundaries on 2D US
images to design a nearly setting-independent classifier. Using an automated
segmentation method, Horsch et al. (14) obtained an A, value of 0.87 in the task of

differentiating all malignant and benign lesions (N=400) in their 2D US data set, and
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0.82 in the task of differentiating the subset of malignant and benign solid lesions
(N=276). Sahiner et al. (15) designed a classifier based on features extracted from 3D
US images, and found that the accuracy of the designed classifier in estimating the
likelihood of malignancy of masses was similar to that of experienced radiologists when
their performances were compared for the same set of images. These previous studies,
therefore, indicate that computer classifiers can perform well for characterizing masses
on US images, although it is not possible to directly compare the performances of the
classifiers because they were tested on different data sets. However, we are aware of
very few studies that investigated the effect of CAD for US mass characterization on
radiologists’ accuracy. Recently, Horsch et al. (26) found that the accuracy of both
expert mammographers and community radiologists improved significantly when they
read 2D US images with CAD. Our study differs from that by Horsch et al. in that 3D
US images were used but our results reinforce the finding that experienced radiologists
can benefit from reading US images with CAD.

The US images used for analysis by the CAD system in this study constituted a
volume that contained the biopsy-proven mass, acquired using an experimental system.
The radiologists in our observer study were asked to characterize the masses based on
the same US volumes. In clinical practice, typically, these readers will interactively
optimize the image quality by changing the probe angle, direction, and US scan settings
for a given case. The images interpreted in our observer performance study were
therefore different from those our radiologists routinely interpret. The potentially less
than optimal image quality may have had a negative impact on their reading accuracy.

To our knowledge, all CAD systems developed so far for breast US operate on static
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images, and therefore do not take advantage of th¢ interactive nature of US imaging.

The use of 3D volumes for CAD design may reduce this disadvantage by providing a
more complete description of the mass compared to a few 2D images containing the
mass. Similarly, interpretation of 3D US volumes by a radiologist may offer advantages
compared to interpretation qf only a few hardcopy images acquired by a US technologist,
although interactive acquisition by a radiologist may still be the best approach. Although
current CAD systems have been designed for off-line processing of recorded US images
to facilitate algorithm development in the laboratory, it is conceivable that the processiﬁg
may be sped up to real time or within seconds of the US exam by firmware
implementation in the future to make it compatible with clinical operations.

Our study had a number of limitations. As described in the Introduction, one of
the purposes of our CAD system was to help radiologists reduce the benign biopsy rate
without affecting the sensitivity of breast cancer detection. Our data set therefore
consisted of only masses that were recommended for biopsy or fine needle aspiration.
However, if such a system were used prospectively, it may affect the management of
cases that the radiologist would normally recommend for a follow-up. It is therefore
important in the future to investigate the performance of the CAD system for masses that
are not recommended for biopsy, and whose outcomes are known by follow-up. A
second limitation is that all the cases in our data set were collected using the same US
machine. Although we believe that our image processing methods will not depend
strongly on small changes in image quality of the US images, the CAD system needs to
be evaluated with images acquired using different US imaging systems to ensure its

robustness against variations in image acquisition systems and parameters. A third
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limitation is that all the observers in our study were very experienced in breast imaging
and US interpretation so that the effects of CAD on less experienced radiologists are still
unknown. We believe that less experienced readers may benefit from CAD at least as
much as the experienced radiologists, if not more. Fourth, our CAD system was trained
and tested using a leave-one-case-out method. Although this is known as a nearly
unbiased classifier design method (19), the performance of our CAD system needs to be
evaluated using independent test sets in order to assure the generalizability of our
approach. However, this study did reveal the potential benefits CAD may provide to the
radiologists for the characterization of masses, given that a CAD system with the level of
performance used in our study is available as a second opinion. Finally, radiologists
generally combine information from US with that from mammograms to reach a
diagnostic decision while the current study only used the information from US images.
The effects of CAD on a combined US and mammogram evaluation remain to be

investigated.
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APPENDIX
Feature extraction

The feature vector for a given mass consisted of four width-to-height features,
four posterior shadowing features, and 72 texture features.

Thé width-to-height features for a mass were the minimum, maximum, mean, and
the standard deviation of the ratio of the width to the height of the segmented mass for
each slice containing the mass. The width W and height H of the segmented mass in a
slice were defined as the widest and the tallest cross-sections of the mass in that slice,
respectively (Figure 2).

The posterior shadowing features for a mass were the minimum, maximum, mean,
‘ and the standard deviation of the feature extracted from each slice containing the mass.
On a given slice, the posterior region of the mass was divided into n overlapping vertical
strips as shown in Figure 2. The width of each strip was equal to W/4, and the height of
the strip was equal to H. The strips were defined only posterior to the central 3W/4
portion of the mass so that bilateral shadows that are sometimes associated with
fibroadenomas could be avoided. Let P denote the mean grayscale value within the
darkest posterior strip, and M denote the mean grayscale value within the segmented
mass. The difference D between M and P defined how dark the US image is in the
darkest posterior strip of the mass compared to the average within the mass. The
posterior shadowing feature for the slice was defined as the normalized difference D/M.

The texture features were extracted from disc-shaped regions posterior and
anterior to the mass. These equal-sized regions contained partly the interior portion of

the mass and partly the mass margins. The total area of the anterior and posterior regions
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was equal to the area of the segmented mass. An example of the anterior disc-shaped
region is shown in Figure 2. On each slice containing the mass, spatial gray level
dependence (SGLD) matrices, S(d, 8) were extracted. The (i,j )th element of S(d, 6)is the
relative frequency with which two pixels, one with gray level i and the other with gray
level j, separated by a pixel pair distance d in a direction 8, occur in the image. In this
study, three pixel pair distances, d=2, 4, and 6, and two pixel pair angles, 8=0° and 90°
were used. On each slice, we therefore extracted six SGLD matrices from the anterior
and six SGLD matrices from the posterior disc-shaped regions. From each SGLD matrix,
six texture features were extracted. These features were information measures of
correlation 1 and 2, entropy, difference entropy, sum entropy, and energy. The
mathematical definitions of these features can be found in the literature (27). The texture
feature vector extracted from a slice was therefore 72-dimensional. These vectors were
averaged over all slices containing a mass to obtain the texture feature vector for the

mass.
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TABLES

Table 1.

Characteristics of the masses in our data set. Each characteristic of a mass was

determined from the assessments by the six radiologists using a majority voting method,

in which the descriptor that was selected by the largest number of radiologists was

chosen.
Qverall .US Shape Margins Echogenicity Through . Other features
1Impression transmission
Negative Oval Circumscribed Echogenic :?;rf:l?fi:cslion 3,?:1121. than
B: 0 (0) B:32 (70) B: 27 (590 B: 0 (0) B: 1328) B: 1 (2)
M: 0 (0) M:13 (23) M: 3 (5 M: 0 (0 M: 1527  M:11(20)
Simple Cyst Round Spiculated Isoechoic ]s)hl:zli)lwin 'eréﬁg enic rim
B: 1( B 87 B 1 (@ B 50 g 11(24g) B @
M: 00 M:3 (5 M: 7 (13) M: 3 (5 M:20(36) M: 1 ()
go;rtlp lex Lobulated  Microlobulated Hypoechoic Neither g(t:]aslion
B?/ 4 9 B: 2 4 B: 5 (11) B: 35 (76) B: 22(48) B: 0 (0)
M 12 M: 7 (13) M:20 (36) M:36 (64) M:21(38) M: 3 (5)
Solid Irregular Il defined hMar;‘:f;(y) ic Calcifications
B: 41(89) B: 4 (9) B: 13 (28 PO ) B: 1 (2
M: 55(98) M:33 (59) M: 26 (46) M: 9 (16) M: 14 (25)

Anechoic E’:ﬁ) ogenic

f/f- } g; B: 1 (2

' M: 2 4

Heterogeneous

B: 1 (2

M: 7 (13)

Note — The numbers in parentheses are the percentages of the descriptors relative to the

total number of benign and malignant masses in the data set. Benign (B): N=46,

Malignant (M): N=56.
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Table 2.

The area A, under ROC curve, and the partial area index Az(o.g) above a sensitivity

of 0.9, for the characterization of the masses in the data set without and with CAD

by the 5 radiologists.
Rad. A, ALY
No  NoCAD With CAD pvalue* NoCAD With CAD p value*
1 0.8310.04 0.89+0.03 0.0008 0.251+0.10 0.35+0.14 0.17
2 0.8140.04 0.86+0.04 0.0005 0.14+0.08 0.2340.12 0.13
3 0.87+0.03 0.9 110.03 0.0486  0.3910.12 0.53%0.12  0.0747
4 0.8240.04 09310.02 0.0004 0.39+0.10 0.68+0.09  0.0008
5 0.8310.04 0.90+0.03 0.0007 0.2910.10 0.4210.12 0.0323

Note —The A, and AZ(O'g) values are the mean + SD.

* The p value from the Student’s two-tailed paired t-test for each radiologist is shown.
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Table 3.

The average A, and AZ(O'g) values without and with CAD for the five radiologists,

obtained by using the average a and b parameters.

Accuracy measure No CAD With CAD p value (DBM) p value (paired t-test)

A, 0.84 0.90 0.006 0.005

ALY 0.30 0.47 4 0.015

Note — The significance of the change in the A, value with CAD for the group of five
radiologists was estimated using both the DBM method and the Student’s two-tailed
paired t-test. The significance of the change in the A,*” value was estimated using the

Student’s two-tailed paired t-test.
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Table 4.

The sensitivity and specificity for each radiologist.

Rad. Sensitivity Specificity

No. NoCAD*  With CAD* With CAD** No CAD* With CAD* With CAD**

1 56 (100) 56 (100) 56 (100) 4 5 (1 15 (33)
2 51 (91 53" (95) 49 (88) 12 (26) 11 (24) 28 (61)

3 52 (93) 54 (96) 53 (95) 24 (52) 22 (48) 29 (63)

4 55 (98) 56 (100) 56 (100) 9 (20) 5 (1D 23 (50)
5 56 (100) 56 (100) 56 (100) 1 2 I @) 11 (24)
Avg. 54 (96) 55 (98) 54 (96) 10 (22) 9 (19 21 (46)

Note — In each entry, the first number denotes the number of correctly classified
lesions, and the number in parentheses denotes the percentage (i.e., sensitivity for
the first three columns. and the specificity for the last three columns). The total
numbers of malignant and benign lesions are 56 and 46, respectively.

* The columns entitled “No CAD*” and “With CAD*” show the sensitivity and
specificity at the decision threshold of 2% likelihood of malignancy, without and
with CAD, respectively.

** The columns entitled “With CAD**” show the hypothetical sensitivity and
specificity with CAD at a decision threshold of 7% likelihood of malignancy, for
which the average sensitivity would be the same as that without CAD (96%), but

the average specificity would be increased to 46%.
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CAPTIONS FOR ILLUSTRATIONS

Figure 1: Five slices containing a malignant mass and the result of computer
segmentation.

Figure 2: For feature extraction, the width W and height H of the mass on a slice were
defined as the widest and the tallest cross-sections of the mass in that slice, respectively.
The mean gray level values within the overlapping posterior strips R(i) and the
segmented mass were used to define the posterior shadowing features. The disc-shaped
regions for texture feature extraction followed the shape of the mass and contained partly
the segmented mass and partly its margins. An example of the anterior disc-shéped
region is shown as the gray area above the segmented mass.

Figure 3: The graphical user interface. The biopsy-proven lesion was marked by an
arrow, which could be switched off when the radiologist assessed the mass. The
interface allowed the users to navigate through the volume, and to adjust the contrast and
brightness. The radiologists first provided their assessment for the mass in six
categories, which were 1) overall US impression; 2) shape; 3) margins; 4) echogenicity;
5) through transmission; and 6) other features. They then provided a likelihood of
malignancy rating without CAD. Finally, the computer’s malignancy score for the mass
was displayed and the radiologists had an option to revise their rating after taking into
consideration the computer’s opinion.

Figure 4. (a) The ROC curves of the five radiologists without CAD and (b) with CAD.
The area under the ROC curve A; and the partial area above a sensitivity threshold of 0.9

A, are shown in Table 2 for each radiologist.
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Figure 5: The average ROC curves of the radiologists with and without CAD, and the
ROC curve of the computer classifier. The average ROC curves were constructed by
using the mean a and b values of the individual observers’ ROC curves shown in Figure
4.

Figure 6: The histogram of the change in radiologists’ ratings with CAD. For the
majority of the masses (59% of malignant masses and 70% of benign masses) the change
was in the range of -4 to 4. When the change in the scores with CAD was greater than or
equal to the range of -5 to 5, the change was called substantial. For malignant masses,
the ratings were substantially increased for an average of 34% (95/280) and decreased for
7% (19/280) of the readings. For benign masses, the ratings were substantially increased
for 14% (32/230) and decreased for 17% (38/230) of the readings.

Figure 7: The histogram of the mean change in the LM ratings of radiologists with
CAD. The mean change for a mass was computed by averaging the changes in the LM
ratings for that mass over the five radiologists who participated in the study. For benign
masses, the overall average LM rating decrease was 0.77, which did not achieve
statistical significance (p=0.51). For malignant masses the overall average LM rating

increase was 5.59, which was statistically significant (p<0.0001).
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ILLUSTRATIONS
i

Figure 1: Five slices containing a malignant mass and the result of computer

segmentation.
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Figure 2: For feature extraction, the width W and height H of the mass on a slice were
defined as the widest and the tallest cross-sections of the mass in that slice, respectively.
The mean gray level values within the overlapping posterior strips R(i) and the
segmented mass were used to define the posterior shadowing features. The disc-shaped
regions for texture feature extraction followed the shape of the mass and contained partly
the segmented mass and partly its margins. An example of the anterior disc-shaped

region is shown as the gray area above the segmented mass.
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Figure 3: The graphical user interface. The biopsy-proven lesion was marked by an
arrow, which could be switched off when the radiologist assessed the mass. The
interface allowed the users to navigate through the volume, and to adjust the contrast and
brightness. The radiologists first provided their assessment for the mass in six
categories, which were 1) overall US impression; 2) shape; 3) margins; 4) echogenicity;
5) through transmission; and 6) other features. They then provided a likelihood of
malignancy rating without CAD. Finally, the computer’s malignancy score for the mass
was displayed and the radiologists had an option to revise their rating after taking into

consideration the computer’s opinion.
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Figure 4: (a) The ROC curves of the five radiologists without CAD and (b) with CAD.
The area under the ROC curve A, and the partial area index above a sensitivity threshold

of 0.9 A, are shown in Table 2 for each radiologist.
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Figure 5: The average ROC curves of the radiologists with and without CAD, and the
ROC curve of the computer classifier. The average ROC curves were constructed by
using the mean a and b values of the individual observers’ ROC curves shown in Figure

4.
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Figure 6: The histogram of the change in radiologists’ ratings with CAD. For the
majority of the masses (59% of malignant masses and 70% of benign masses) the change
was in the range of -4 to 4. When the change in the scores with CAD was greater than or
equal to the range of -5 to 5, the change was called substantial. For malignant masses,
the ratings were substantially increased for an average of 34% (95/280) and decreased for
7% (19/280) of the readings. For benign masses, the ratings were substantially increased

for 14% (32/230) and decreased for 17% (38/230) of the readings.

41



N
-

N
o

= Benign
1 Malighant

-t
(=2}

Number of cases
-—t
N

-25-20-15-10 -5 0 5 10 15 20 25 30
Average change in rating with CAD

Figure 7: The histogram of the mean change in the LM ratings of radiologists with CAD.
The mean change for a mass was computed by averaging the changes in the LM ratings
for that mass over the five radiologists who pa.rficipated in the study. For benién masses,
the overall average LM rating decrease was 0.77, which did not achieve statistical
significance (p=0.51). For malignant masses the overall average LM rating increase was

5.59, which was statistically significant (p<0.0001).
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VOLUMETRIC ULTRASOUND IMAGES: AN ROC STUDY
B Sahiner (P); H Chan; L M Hadjiiski; M A Roubidoux; C P Paramagul; M A Helvie ; et al.
PURPOSE
Computer-aided diagnosis (CAD) methods have previously been developed to assist radiologists in
characterizing breast masses on mammograms and ultrasound (US) images. In this study, we
developed a classifier that merged information from both modalities, and assessed its effect on
radiologists' accuracy.

METHOD AND MATERIALS

The data set consisted of images from 67 patients containing biopsy-proven solid masses (32
benign and 35 malignant). An experienced radiologist identified the region of interest (ROI)
containing the lesion on both modalities. The 3D US volumetric data were collected as cine-clips
when the transducer was translated across the lesion. US and mammographic features were
automatically extracted based on the margin, spiculation, shadowing, and shape characteristics of
the masses. The features were combined into a malignancy score using a computer classifier
designed with a leave-one-case-out method. Five MQSA radiologists participated in the ROC study.
First, the radiologist read the mammogram ROIs, and provided a BIRADS score and a malignancy
rating. Second, the US images were displayed along with the mammogram ROIs, the radiologist
provided a second malignancy rating, and recommended: (i) 1-year follow-up; (ii) short-term
follow-up; or (iii) biopsy. Third, the computer score was displayed, and the radiologist provided a
third malignancy rating and revised the recommended action. The classification accuracy was
quantified using the area under ROC curve, Az,

RESULTS

The computer classifier achieved a test Az value of 0.91. When reading mammograms alone, the
radiologists had an average Az of 0.88 (range: 0.82-0.93). When the mammograms were
supplemented by US images, the average Az increased to 0.92 (range:0.86-0.96). With CAD, the
average Az increased significantly (p=0.03) to 0.95 (range:0.90-0.98). The average sensitivity for
biopsy recommendation also improved from 0.96 to 0.98, and average specificity improved from
0.37 to 0.39.

CONCLUSIONS

The radiologists were more accurate in characterizing masses when both mammograms and
volumetric US images were available. A well-trained computer algorithm can improve radiologists'
accuracy even in this multi-modality reading condition.




Appendix 5

Fusion of mammographic and sonographic computer-extracted features

for improved characterization of breast masses

Berkman Sahiner, Heang-Ping Chan, Lubomir M. Hadjiiski, Marilyn A. Roubidoux,
Chintana Paramagul, Mark A. Helvie, Gerald L. LeCarpentier
Department of Radiology, University of Michigan, Ann Arbor
Abstract
Ultrasound and mammography are two commonly used modalities for characterization of
breast masses. Computerized classification methods have been developed for each
modality for the purpose of aiding the radiologists in making a biopsy recommendation.
Combining the diagnostic information from these two modalities may further incréase the
accuracy of computer classifiers for differentiation of malignant and benign masses. In
this study, we developed a computerized multi-modality classifier that used computer-
extracted information from 3D ultrasound images and digitized mammograms. Our data
set contained mammograms and 3D ultrasound images from 67 patients. Thirty-two
masses were benign and 35 were malignant. The feature space for our multi-modality
classifier consisted of case-based ultrasound and case-based mammographic features.
Ultrasound features were extracted based on the margin, shadowing, and shape
characteristics of the masses that were segmented using an automated 3D algorithm.

Features extracted from different ultrasound slices were averaged to yield case-based




ultrasound features. Mammographic features were extracted based on texture,
morphological, and spiculation characteristics. Features extracted from different views
were averaged to yield case-based mammographic features. We used a leave-one-case-
out resampling scheme for classifier design, which included both the feature selection
and linear discriminant analysis stages. The area Az under the test receiver operating
characteristic curve for the multi-modality classifier was 0.92. In comparison, the
classifiers based on ultrasound and mammographic features alone had Az values of 0.88
and 0.86, respectively. For comparison with the multi-modality computer classifier, five
experienced breast radiologists provided malignancy ratings based on the same
mammograms and 3D ultrasound images. The radiologists’ Az values ranged between
0.86 and 0.96 (average: 0.92). This study indicates that a multi-modality computer
classifier can be designed for differentiation of malignant and benign breast masses
which could achieve an accuracy comparable to that of experienced MQSA radiologists.
1. Introduction

A large percentage of breast biopsies are performed unnecessarily with an outcome of
benign conditions (Bassett et al. 1992; Hermann et al. 1987). Computer-aided diagnosis
(CAD) has a potential to assist the radiologists in reducing benign biopsies by providing
them a consistent and reproducible second opinion. Computerized feature extraction and
classification methods for characterization of breast masses on mammograms
(Rangayyan et al. 1996; Sahiner et al. 1998; Huo et al. 1998) and on ultrasound (US)
images (Chen et al. 1999; Horsch et al. 2002; Chen et al. 2003; Sahiner et al. 2004) have
been active areas of research. Observer performance experiments indicate that the

accuracy of radiologists’ characterization of breast masses on mammograms (Chan et al.



1999; Huo et al. 2002) and on US images (Sahiner et al. 2003; Horsch et al. 2004) may
be significantly improved if they are aided by a well-trained CAD system. The purpose
of this study was to design a multi-modality classifier that uses features from both
mammograms and US images with the purpose of further improving the radiologists’
accuracy by CAD. The performance of the multi-modality classifier was compared to
those of the single-modality computer classifiers and of experienced radiologists
reviewing both modalities.

2. Methods

2.1 Feature extraction for classification of breast masses on mammograms

The first step in our feature extraction method was mass segmentation. Our automated
mass segmentation method (Sahiner et al. 2001) was based on an active contour model

that followed an initial segmentation using K-means clustering. Since the active contour

‘model could not be used to segment spiculations, an additional segmentation stage was

designed for spiculation detection (Sahiner et al. 2001).

After segmentation, morphological features were extracted from the segmented mass
shapes. The extracted features included a Fourier descriptor, convexity, rectangularity,
perimeter, contrast, circularity, perimeter-to-area ratio, area, normalized radial length
(NRL) mean, NRL entropy, NRL area ratio, NRL standard deviation, and NRL zero
crossing count. Thfee spiculation features were extracted from a spiculation measure
defined for the pixels along the boundary of the mass (Hadjiiski et al. 2001). Run-length

statistics (RLS) texture features were extracted from the band of pixels surrounding the



mass after the band was transformed into Cartesian coordinates 'using the rubber-band
straightening transform (Sahiner ez al. 1998).

2.2 Feature extraction for classification of breast masses on 3D US volumes

The 3D US images were acquired using an experimental system previously developed
and tested at our institution (Bhatti et al. 2001). A 3D active contour model initialized
with a radiologist-defined 3D ellipsoid was used to segment the mass (Sahiner ef al.
2004). After mass segmentation, morphological and texture features were extracted from
each slice containing the mass. The morphological features included the width-to-height
ratio and posterior shadowing features. The definitions of these features can be found in
the literature (Sahiner et al. 2004). The texture features were extracted from SGLD
matrices derived from 2D slices of the 3D data set. Since the margins of the mass
contain the richest information for characterization, these features were extracted from
two disk-shaped regions containing the mass boundary on the upper and lower margins of
the mass. Six texture feature measures that are invariant under linear, invertible gray
scale transformations were extracted. More details about texture features used in this
study can be found in the literature (Sahiner ez al. 2004).

2.3 Multi-modality classifier

The methods described above extracted features from each view for the mammograms,
and each slice of the 3D volume for US images. We have previously studied different
methods for combining these multi-modality features (Sahiner et al. 2004). In this study,
we followed the following approach, which was found to be one of the successful
strategies for -multi-modality classifier design in our previous study: (i) averaged the

feature vectors from each mammographic view to obtain a case-based mammographic



feature vector (ii) averaged the feature vectors from each US slice to obtain a case-based
US feature vector (iii) pooled case-based mammographic and US features in a combined
feature space for classifier design, which included stepwise feature selection and linear
discriminant analysis. A leave-one-case-out methodology was used to train and test the
classifier with N=67 cases. The training included feature selection and the computation
of classifier coefficients for the selected features using N-1 cases. The test scores were
analyzed using receiver operating characteristic (ROC) methodology. The classification
accuracies using single and multi-modality features were compared in terms of the area
A, under the ROC curve.

2.4 Data set

Our data set consisted of US volumes and mammograms from 67 patients who had a
mammographically visible solid mass deemed suspicious or highly suggestive of
malignancy. All patients underwent biopsy or fine needle aspiration. Thirty two of the
masses were benign and 35 were malignant. The total number of mammographic views

was 163, with each case containing between one and three views (CC, MLO, or LAT).

The biopsied mass on the mammograms and the US volumes was identified by an MQSA
(Mammography Quality Standards Act) qualified radiologist using clinical images and
case reports to confirm that the identified region contained the biopsied mass. Five
radiologists read the mammograms and 3D US images on a high-quality computer
monitor using a graphical user interface with which they could view the mammographic
regions of interest, navigate throﬁgh 3D volumes, adjust the window and level of the

displayed images, and enter a malignancy rating between 1 and 100 (higher rating



indicating higher likelihood of malignancy). All radiologists were MQSA qualified, and
were either fellowship-trained in breast imaging or had over 25 years of experience in
breast imaging. There was no time limit for the radiologists to read a case. The case
reading order was randomized for each radiologist.

3. Results

The computer classifier using the US images alone, mammograms alone, and the
combined feature space had A, values of 0.88+0.04, 0.861+0.05, and 0.9210.03,
respectively. The ROC curves with the single-modality classifiers and the multi-modality
classifier are shown in figure 1. Although the multi-modality classifier had higher
accuracy, the difference between the A, values of the multi-modality and single-modality
classifiers did not reach statistical significance, probably because of the small sample
size. The A, values of the five radiologists ranged between 0.86 and 0.96. The A, value
of their average ROC curve, computed by averaging the a and b values in ROC analysis,
was 0.92. Figure 2 compares the ROC curve of the computer classifier to that of the

individual radiologists.
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Figure 1: Comparison of the ROC curves Figure 2: Comparison of the ROC curves
for the single-modality and multi-modality | of the five radiologists and the multi-
classifiers. modality computer classifier.

4. Conclusion

Our results indicate that a multi-modality classifier that combines computer-extracted
features from mammograms and US images may improve the accuracy of the single-
modality classifiers. |

We plan to enlarge our data set to investigate if the observed improvement with multi-
modality CAD is generalizable, and to test the statistical significance of the difference
between the multi- and single-modality classifiers. We will also perform observer
performance studies to investigate the effect of our multi-modality computer classifier on
radiologists’ accuracy in characterizing malignant and benign masses.
Acknowledgements

This work was supported in part by U.S. Army Medical Research Materiel Command

grant DAMD17-01-1-0328 and by USPHS grants CA91713 and CA95153. The content



of this paper does not necessarily reflect the position of the government and no official
endorsement of any equipment and product of any companies mentioned should be

inferred.

References

Bassett, L. W., T. H. Liu, A. L. Giuliano and R. H. Gold. 1992. The prevalence of
carcinoma in palpable vs impalpable, mammographically detected lesions. AJR 158: 688-
689.

Bhatti, P. T., G. L. LeCarpentier, M. A. Roubidoux, J. B. Fowlkes, M. A. Helvie and P.
L. Carson. 2001. Discrimination of sonographically detected breast masses using
frequency shift color Doppler imaging in combination with age and gray scale criteria.
Journal of Ultrasound in Medicine 20: 343-350.

Chan, H.-P., B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T. E. Wilson, D. D.
Adler, C. Paramagul, J. S. Newman and S. S. Gopal. 1999. Improvement of radiologists'
characterization of mammographic masses by computer-aided diagnosis: an ROC study.
Radiology 212: 817-827.

Chen, C. M., Y. H. Chou, K. C. Han, G. S. Hung, C. M. Tiu, H. J. Chiou and S. Y.
Chiou. 2003. Breast lesions on sonograms: computer-aided diagnosis with nearly setting-
independent features and artificial neural networks. Radiology 226: 504-514.

Chen, D. R., R. F. Chang and Y. L. Huang. 1999. Computer-aided diagnosis applied to

US of solid breast nodules by using neural networks. Radiology 213: 407-412.




Hadjiiski, L. M., B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie and M. N. Gurcan.
2001. Analysis of Temporal Change of Mammographic Features: Computer-Aided
Classification of Malignant and Benign Breast Masses. Med. Phys. 28(11): 2309-2317.
Hermann, G., C. Janus, I. S. Schwartz, B. Krivisky, S. Bier and J. G. Rabinowitz. 1987.
Nonpalpabie breast lesions: Accuracy of prebiopsy mammographic diagnosis. Radiology
165: 323-326.

Hdrsch, K., M. L. Giger, L. A. Venta and C. J. Vyborny. 2002. Computerized diagnosis
of breast lesions on ultrasound. Med. Phys. 29: 157-164.

Horsch, K., M. L. Giger, C. J. Vyborny and L. A. Venta. 2004. Performance of computer-
aided diagnosis in the interpretation of lesions on breast sonography. Acad. Radiol. 11(3):
272-280.

Huo, Z. M., M. L. Giger, C. J. Vyborny and C. E. Metz. 2002. Breast cancer:
Effectiveness of computer-aided diagnosis - Observer study with independent database of
mammograms. Radiology 224(2): 560-568.

Huo, Z. M., M. L. Giger, C. J. Vyborny, D. E. Wolverton, R. A. Schmidt and K. Doi.
1998. Automated computerized classification of malignant and benign masses on
digitized mammograms. Acad. Radiol. 5: 155-168.

Rangayyan, R. M., N. El-Faramawy, J. E. L. Desautels and O. A. Alim (1996).
Discrimination between benign and malignant breast tumors using a region-based
measure of edge profile acutance. Digital Mammography '96 Eds. K. Doi, M. L. Giger,
R. M. Nishikawa and R. A. Schmidt. Amsterdam, Elsevier. 213-218.

Sahiner, B., H. P. Chan, L. M. Hadjiiski, M. A. Roubidoux, C. Paramagul, M. A. Helvie

and C. Zhou. 2004. Multi-modality CAD: Combination of computerized classification




techniques based on mammograms and 3D ultrasound volumes for improved accuracy in
breast mass characterization. Proc. SPIE 5370: 67-74.

Sahiner, B., H. P. Chan, N. Petrick, M. A. Helvie and M. M. Goodsitt. 1998.
Computerized characterization of masses on mammograms: The rubber band
straightening transform and texture analysis. Med. Phys. 25: 516-526.

Sahiner, B., H.-P. Chan, N. Petrick, M. A. Helvie and L. M. Hadjiiski. 2001.
Improvement of mammographic mass characterization using spiculation measures and
morphological features. Med. Phys. 28: 1455-1465.

Sahiner, B., H. P. Chan, M. A. Roubidoux, M. A. Helvie, J. Bailey and L. M. Hadjiiski.
2003. An ROC study on characterization of malignant and benign breast masses in 3D
ultrasound volumes: The effect of computer-aided diagnosis on radiologists'
characterization accuracy. RSNA 2003, Chicago, Ill, Radiological Society of North
America.

Sahiner, B., H. P. Chan, M. A. Roubidoux, M. A. Helvie, L. M. Hadjiiski, A.
Ramachandran, G. L. LeCarpentier, A. Nees, C. Paramagul and C. E. Blane. 2004.
Computerized characterization of breast masses on 3-D ultrasound volumes. Med. Phys.

31(4): 744-754.

10



